Fundamental Physics & the Energy Frontier

- What would we learn?
- Is exploring the unknown a sufficient motivation?
- •How important are the perspectives and lessons we have learned in attempting to address fundamental questions in motivating such a step?
- Imagining the SM will in the end be confirmed, will the acquired knowledge be worthy? and why?

Problems vs Mysteries

- Dark Matter
- Baryogenesis
- Strong CP
- Fermion mass spectrum & mixing

Plausible EFT solutions exist

- EW hierarchy
- Cosmological Constant
- Very Early Universe
- Black Hole information paradox

Challenge or outside EFT paradigm

One Pespective

the Energy Frontier through the lens of the Hierarchy Paradox

Can you propose other perspectives?

Simplicity vs Naturalness: The Hierarchy Paradox

SM is EFT valid below physical cut-off
$$\Lambda_{UV}$$

$$\mathcal{L}_{SM} = \mathcal{L}^{d \le 4} + \frac{1}{\Lambda_{UV}} \mathcal{L}^{d=5} + \frac{1}{\Lambda_{UV}^2} \mathcal{L}^{d=6} + \dots$$

$$\Lambda_{\scriptscriptstyle UV} \gg m_{weak}$$

$$\mathcal{L}_{\scriptscriptstyle SM} o \mathcal{L}^{d \leq 4}$$

Observations speak for Simplicity $\begin{array}{|l|l|} \hline $L_{SM} \to \mathcal{L}^{d \leq 4}$ & B, L, \text{``GIM suppression'', custodial symm, ...} \\ \hline $m_{\nu} \ll m_{weak}$ & beautifully explained \\ \hline \end{array}$

$$m_{\nu} \ll m_{weak}$$

Theory expects Naturalness
$$\delta m_h^2 \sim \frac{y_t^2}{4\pi^2} \Lambda_{\scriptscriptstyle UV}^2 + \dots \qquad \qquad \Lambda_{\scriptscriptstyle UV} \lesssim 500 \, {\rm GeV}$$

$$\Lambda_{UV} \lesssim 500 \, \mathrm{GeV}$$

Clash between Simplicity and Naturalness

Made concrete by basically all available Natural models (SUSY, Comp Higgs,...)

$$m_h^2 = c \frac{y_t^2}{4\pi^2} \Lambda_{UV}^2 + \dots$$
 high dilatation spin symm symm

As good as dimensional analysis in mechanics

$$\omega = c \sqrt{\frac{g}{L}}$$

- I. The SM is valid up to $\Lambda_{UV} \gg TeV$
- B, L and Flavor: beautifully in accord with observation
- Higgs mass & C.C. hierarchy point beyond naturalness
 - multiverse
 - cosmological relaxation, Nnaturalness, ...
 - failure of EFT ideology (UV/IR connection)

- II. Naturalizing New Physics appears at $\Lambda_{UV} \sim 1 \, {
 m TeV}$
- Constraints on B, L, Flavor & CP met by clever model building

 $10^{12}\,\mathrm{TeV}$

High Scale SM: super simple & super un-natural

perfect Flavor and CP $10^4 \, \mathrm{TeV}$

better Flavor and perfect EW

 $10^2 \, \mathrm{TeV}$

Middle Options?
just simpler and not yet
super un-natural

TeV

TeV Scale New Physics: not simple & almost natural

unavoidable and global perspective on energy frontier exploration

In any model with calculable m_h :

$$m_h^2 = \sum_i \Delta m_i^2$$

fine tuning
$$\epsilon \equiv \frac{m_h^2|_{exp}}{\Delta m_h^2|_{max}}$$

offers a measure of where Nature stands in the negotiation between Simplicity and Naturalness and **one key** to the experimental strategy

Fine Tuning Theorems

Higgs couplings

HL-LHC, ILC, Fccee, μ-collider

$$\frac{\delta g_h}{g_h} \sim \epsilon$$

direct searches HL-LHC, Fcchh, μ-collider

$$\left(\frac{m_h}{m_{NR}}\right)$$

$$\left(\frac{m_h}{m_{NP}}\right)^2 \div \left(\frac{500\,\text{GeV}}{m_{NP}}\right)^2 \sim \epsilon$$

• EWPT

HL-LHC, ILC, Fccee,
$$\mu$$
-collider $\frac{\delta O_{EW}}{O_{EW}} \sim 10^{-2} \div 10^{-3} \times \epsilon$

Flavor

HL-LHC, Belle, NA62

model dependent but worth more and better attention

The foreseable and unforeseable future machines will allow to explore down to

$$\epsilon \lesssim 10^{-3}$$

Higgs couplings

$$\epsilon \lesssim 10^{-3} \div 10^{-4}$$

direct searches

Imagining the SM will in the end be confirmed, do you consider the acquired knowledge worthy? and why?