David's Calm-ments

Starting Point

Known fundamental laws:

Quantum field theory

The Standard Model, including GR:

$$\mathcal{L} = \frac{1}{2}\bar{q}(i\partial_{\mu} + g_sG_{\mu} + gW_{\mu} + g'\frac{1}{3}B_{\mu})\gamma^{\mu}q + \dots + y_eh\bar{\ell}e + \dots + m^2|h|^2 - \frac{1}{4}|h|^4 + \dots$$

(add gravitational couplings)

The Frontier: High Energy & Weak Coupling \boldsymbol{E} Colliders AMO (DC) **Fixed Target** Materials/Nobles **Nuclear Decays** Stars AMO (AC)

Hints Beyond the SM

0. DARK MATTER	BSM
1. Cosmological Constant Problem	123
2. The Hierarchy Problem	32
3. The Strong CP Problem	10 Small Parameters
4. Patterns in Fermion Masses	5
5. Neutrino Masses	?

∞ . GR UV Scale

Breakdown of Theory

(also: Hubble tension, b-physics?, g-2?, Beryllium?, neutrinos, tons of astrophysics...)

Anomalies

Dark Matter

QFT — if the matter exists, the 'field' exists. The particle can be produced, the field can cause forces, etc. (Example — light!)

Light Fields: Couplings

Spin 0, 1/2, and 1

Spin 0 (like h's or π)

coupling to p/n/e mass $-\phi \bar{\psi} \psi$ coupling to p/n/e spin $-\partial \phi \bar{\psi} \gamma \gamma^5 \psi$ coupling to γ kinetic $-\phi FF$ coupling to γ spin $-\phi F\tilde{F}$ (CP even vs CP odd - naturalness)

Spin 1 (like γ or W/Z)

mixing with $\gamma - FF'$ new charge $(p/n/e) - \bar{\psi}\gamma A'\psi$ dark mag moment $(p/n/e) - \bar{\psi}\sigma\psi F'$ coupling to p/n/e spin $-\bar{\psi}\gamma\gamma^5 A'\psi$

various to ν couplings

Spin 1/2 couplings (like matter):

mixing with $\nu - \bar{\nu}\chi$ couplings

Light Fields: Physical Effects

Forces!

EP violating

$$\frac{1}{r^2} \rightarrow \frac{e^{-mr}}{r^2} \text{ (range } \sim \frac{1}{m}\text{)}$$

Earth/LabLab/Lab (cavendish)

Earth/Moon/Sun

Spin-dependent forces For polarized material

Nuclear (and atomic/hadronic) decays

Solar/Stellar emission

Light Fields: Backgrounds

If it is DM/DE or static

Photon polarization rotation

Sources change Fundamental Constants (mass/coupling):

atomic/molecular/nuclear spectroscopy: Static or dynamic!

Heavy Fields

(beyond colliders)

Heavy Fields

Higher-D operators: Precision measurement!

Produce 'forbidden' operators

 d_e ~ 9 orders of magnitude above SM

 $d_n \sim 5$ orders of magnitude above SM

e.g., current constraints up to
$$d_n < \frac{m_n}{(10^6\,{\rm GeV})^2}$$

Heavy Fields

Higher-D operators: Precision measurement!

Produce 'forbidden' operators

FCNCs

e.g.,
$$\mu \rightarrow e \gamma$$

 μ

Bound on operator, approaching 106 GeV

Proton decay

e.g.,
$$p \rightarrow e\pi$$

p

Bound on operator, approaching 1015 GeV

 π

B-physics effects, charge radius of the proton, etc...

Violating SR

Violations of SR (Lorentz Invariance) can often be parameterized by background fields (static or dynamic)

Violating GR

Violations of GR (EP violation, etc) can often be parameterized by new long-range forces

Tests of GR have only been probed to length scales of 100µm, or 10³¹ x Planck length!

QG (GR violation)

Only place in the universe we are confident GR breaks down — center of Black Hole collapse

Study the horizon using interferometry, other tests of GR! (light and atoms)

Violating QM

non-linear: localized wave function talking to itself:

$$i\partial_t \psi = \hat{H}\psi + \hat{\mathcal{F}}(\psi, \psi^*)\psi$$

-> Entanglement in "worlds" interact

Non-unitary: definite to mixed states

$$\partial_t \hat{\rho} = -i \left[\hat{H}, \hat{\rho} \right] + \hat{L} \hat{\rho} \hat{L}^{\dagger} - \frac{1}{2} \left[\hat{L}^{\dagger} \hat{L}, \hat{\rho} \right]_{+}$$

—> Decoherence (different from b.g. fields?)

Thank you