A New Spin on Long-Range Interactions

Continuous Spin Particles and Predictions for their Interactions

Natalia Toro

based on <u>2303.04816</u> (JHEP) with P. Schuster, **K. Zhou** and 2308.XXXXX with Schuster (see also <u>1302.1198</u>, <u>1302.1577</u>, <u>1404.0675</u> with Schuster)

Outline

- Everything you learned about massless particles' spin in QFT is a special case. Helicities mix under Lorentz controlled by *spin scale* ρ [Wigner 1939]
- Coupling to matter particles is a predictive and (so far) well-behaved IR deformation of familiar theories we've had hints for a while [1302.1577], now have exact scheme to calculate both classical physics and amplitudes in putative theory
 - Punchline: Heuristic and example results
 - Superspace-like formalism for gauge theories of any massless particle [1404.0675]
 - Coupling matter particles to fields with nonzero ρ , aka "Continuous spin fields"
- (A few of the) open questions and future directions

Massless Spin, Covariantly

Spin state — Internal charges Physical states take the form $|p^{\mu}, \sigma, n\rangle$

Spin σ characterizes state's transformation under little group.

Little group generators correspond with 3 components of $W^{\mu} = -\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} J_{\nu\rho} p_{\sigma}$

For massive particle at rest, $W^{\mu}=(0,m\mathbf{J})$. (Spatial) components generate SO(3). Natural relativistic invariant is $W^2=-m^2\mathbf{J}^2=-m^2s(s+1)$

For massless particle:

 W^0 , $\mathbf{W} \cdot \hat{\mathbf{p}}$ are proportional to familiar helicity generator $R = \mathbf{J} \cdot \hat{\mathbf{p}}$. Transverse spatial components (W_x, W_y) for $\mathbf{p} \propto \hat{\mathbf{z}}$ are less familiar:

 $W_x \propto J_x + K_y$ and $W_y \propto -J_y + K_x$ generate transverse boost **and** rotation

These generators commute – they are the "translations" of ISO(2) little group

The natural relativistic invariant is $W^2 = -(W_x^2 + W_y^2)$ – independent of helicity R!

Massless Spin, Covariantly

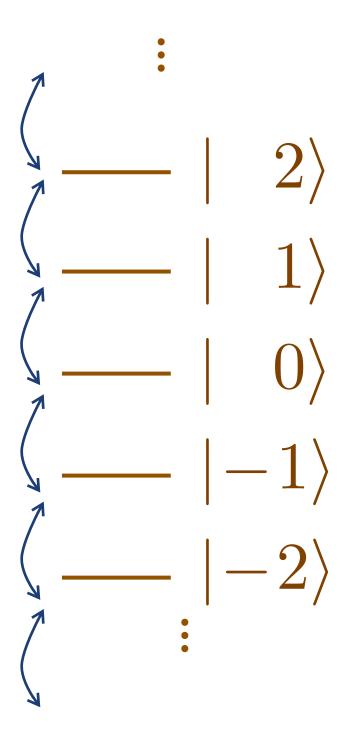
It's convenient to work in a helicity eigenstate basis: $\mathbf{J} \cdot \hat{\mathbf{p}} | p, \sigma \rangle = \sigma | p, \sigma \rangle$, Eigenvalues σ must be (half-)integer so that 4π rotation returns state to itself, since Lorentz group is doubly connected.

Build raising/lowering operators from "translations": $W_{\pm} = W_x \pm iW_y$, with $[R, W_{\pm}] = \pm W_{\pm}$ $W_{+}|p,\sigma\rangle = \rho|p,\sigma\pm1\rangle$ where the invariant $W^{2} = -\rho^{2}$ sets the spin-scale ρ .

representation.

Massless Spin, Covariantly

 $W_+ | p, \sigma \rangle = \rho | p, \sigma \pm 1 \rangle$. Invariant $W^2 = -\rho^2$ sets the spin-scale ρ .



Exception: if $\rho = 0$ the states decouple. Each $|\sigma\rangle$ is a singlet representation, related only to $|-\sigma\rangle$ by CPT. All known massless theories fall under this exception.

The general case $\rho \neq 0$, where integer helicities mix under Lorentz – just as they do

helicities mix under Lorentz – just as they do for massive particles – is known as "continuous" or "infinite" spin. (Every name is misleading. I invite you to find a better one)

Why has this possibility been ignored?

So far, quick counter-arguments that sound bad but don't survive close scrutiny.

Continuous spin includes high helicity states. Massless high spin is sick. Aren't these?

Robust constraints on high helicities (e.g. Weinberg-Witten, Weinberg soft theorems) all rely deeply on boost-invariance of helicity, so don't apply when $\rho \neq 0$.

Massive high spin is a somewhat better analogy, and can be consistent -e.g. nuclei and string theory

Incompatible with field theory?

Early analyses didn't allow for gauge redundancy! No problem now (at least in free theory)

Are infinitely many states at fixed energy a problem? (Cross-sections, thermodynamics)

Very interesting resolution follows from Lorentz symmetry (at least for best-controlled calculations)

At frequencies $\gg \rho$, all but one helicity have parametrically suppressed interactions.

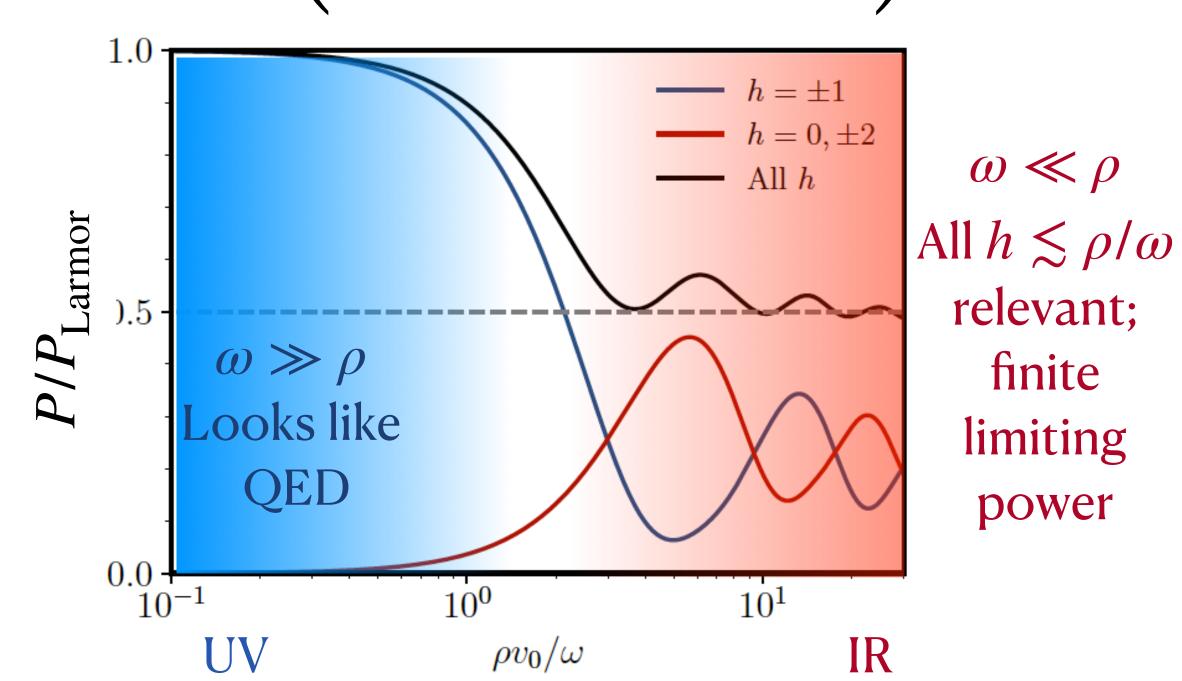
The dominant interaction can be "scalar-like", "vector-like", or "tensor-like"

Concrete Predictions: Vector-Like Coupling Class

Classical radiation from an oscillating particle: Leading

$$P = \frac{e^2 \omega^2 v_0^2}{12\pi} \left(1 - \frac{9}{80} \frac{\rho^2 v_0^2}{\omega^2} + \dots \right)$$

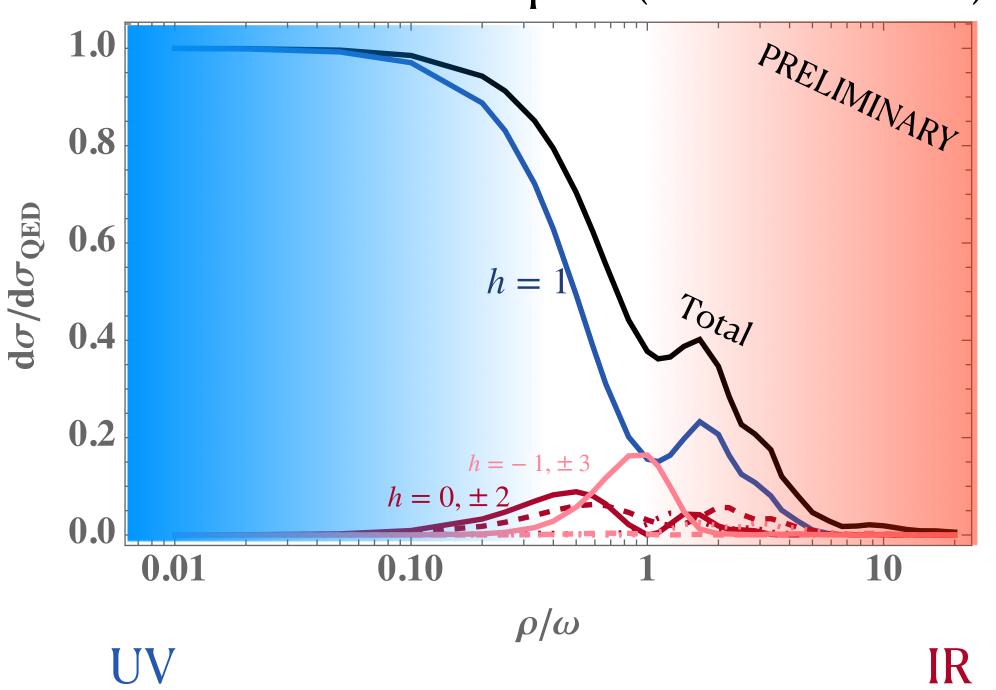
Larmor



Scattering amplitudes computed using vertex operators

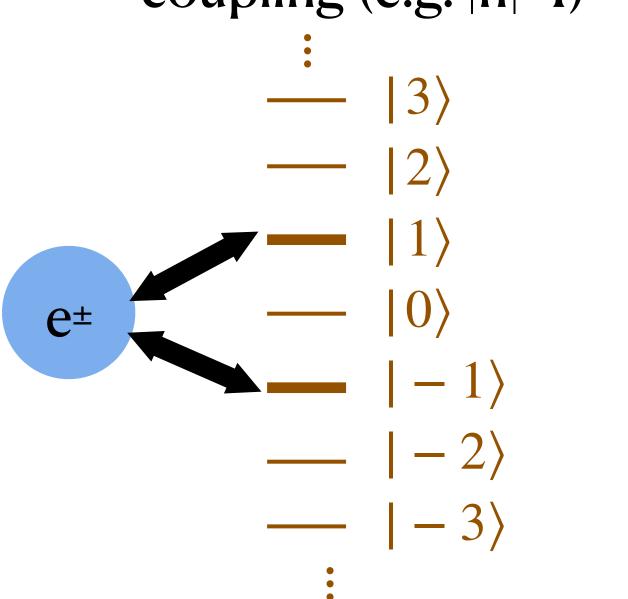
$$\hat{V}_{CSP}^{k,\eta}(t) \equiv ie^{ik\cdot z(t)} e^{-i\rho \frac{\eta \cdot z(t)}{k\cdot \dot{z}(t)}} \left(\sqrt{2}ik \cdot \dot{z}(t)/\rho\right)$$

Massless scalar Compton (fixed kinematics)



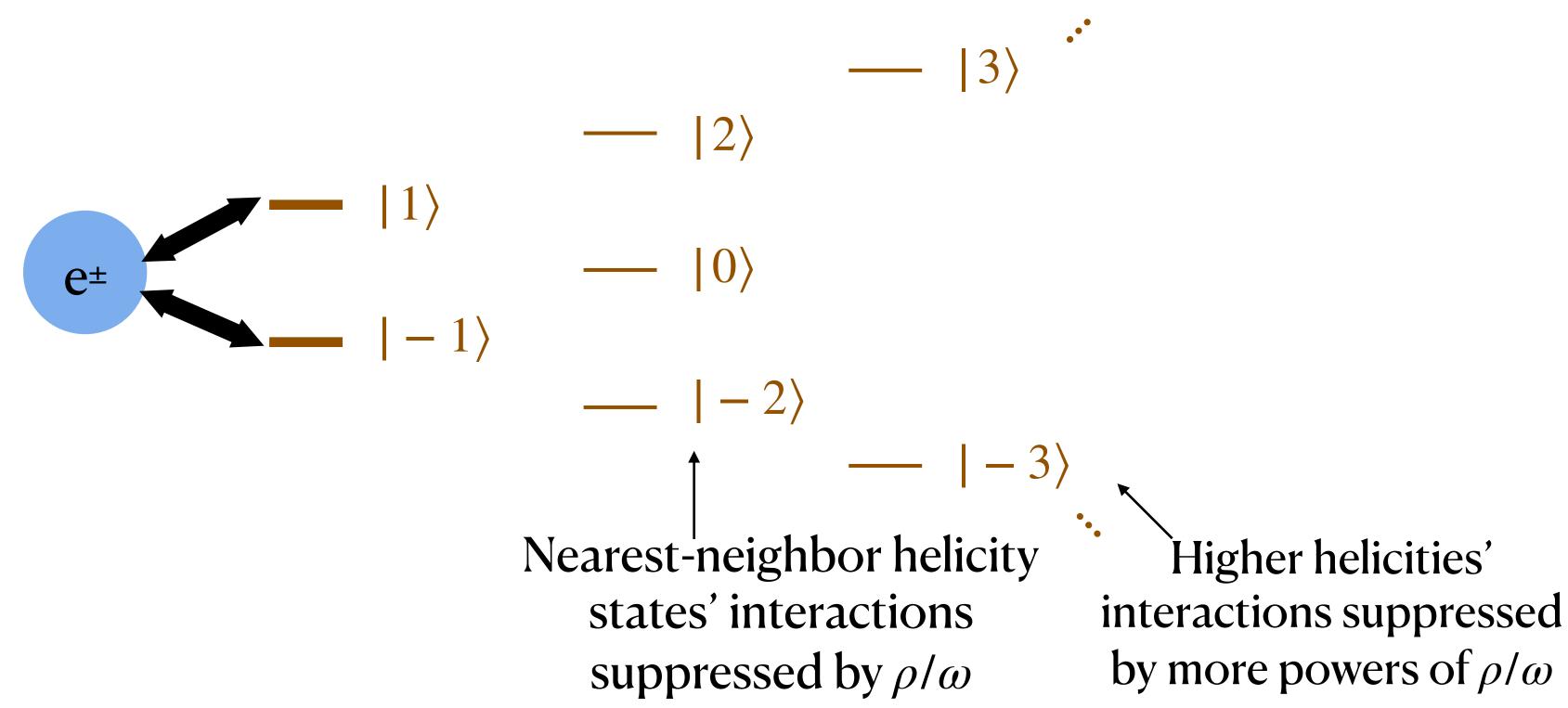
Continuous Spin Particles are like familiar massless particles with an associated dark sector

Covariant interactions single out **one** helicity with unsuppressed coupling (e.g. |h|=1)

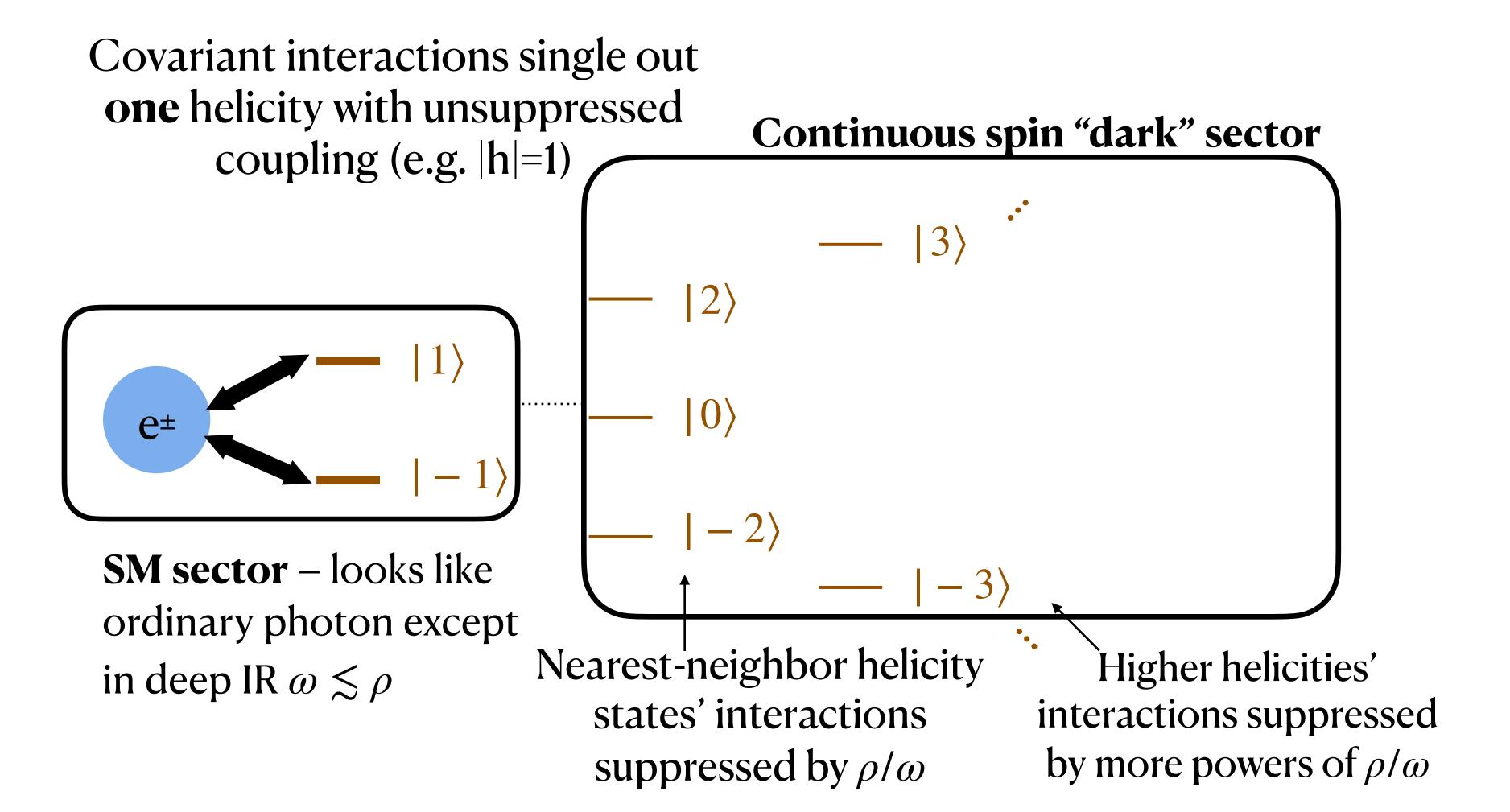


Continuous Spin Particles are like familiar massless particles with an associated dark sector

Covariant interactions single out **one** helicity with unsuppressed coupling (e.g. |h|=1)



Continuous Spin Particles are like familiar massless particles with an associated dark sector



⇒ Only lowest-energy phase space of partner modes thermalizes, with finite (polynomial → logarithmically growing) $\sum \delta n(h)$

Why should we care?

• Theorist: "Because it's there"

Falls out simply from postulates of relativity and quantum mechanics ⇒ worth understanding!

• Phenomenologist: "Because it might really be there"

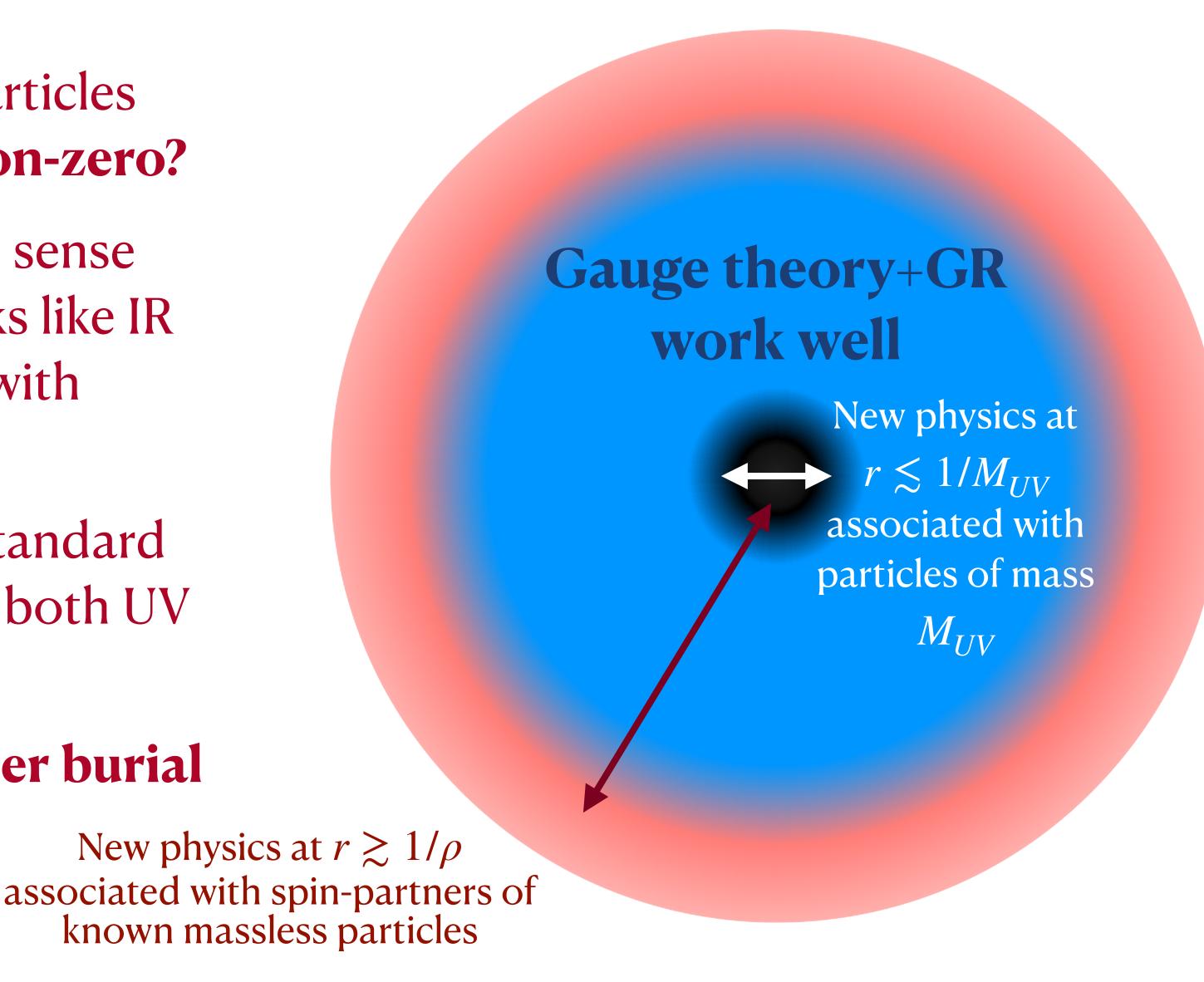
Can think about experimental measurements/constraints on the spin-scale of photons and gravitons

All SM fields are either fundamentally massless (before EWSB) or unnaturally light.

Thinking about models with non-zero spin scales may illuminate new approaches to many SM problems.

Worldview

- Lorentz invariance → massless particles have a spin-scale. Is it zero or non-zero?
- The non-zero option makes more sense than previously thought, and looks like IR modification of familiar theories with testable consequences
- If viable, we should think of the Standard Model as an effective theory with both UV and IR completions.
- If inconsistent, deserves a proper burial



Outline

- Everything you learned about massless particles' spin in QFT is a special case. Helicities mix under Lorentz controlled by *spin scale* ρ [Wigner 1939]
- Coupling to matter particles is a predictive and (so far) well-behaved IR deformation of familiar theories we've had hints for a while [1302.1577], now have exact scheme to calculate both classical physics and amplitudes in putative theory
 - Punchline: Heuristic and example results
 - Superspace-like formalism for gauge theories of any massless particle [1404.0675]
 - Coupling matter particles to fields with nonzero ρ , aka "Continuous spin fields"
- (A few of the) open questions and future directions

- Continuous spin particle has modes of every helicity, that separate into singleton representations as $\rho \to 0$
- Helicity ±h modes typically described by gauge theory of rank-h tensor fields
 - Notably subtle many components: 2 physical, rest are pure gauge
- Continuous spin field should, in $\rho \to 0$ limit, decompose into similar modes. Can group them into a "superfield"

- Continuous spin particle has modes of every helicity, that separate into singleton representations as $\rho \to 0$
- Helicity ±h modes typically described by gauge theory of rank-h tensor fields
 - Notably subtle many components: 2 physical, rest are pure gauge
- Continuous spin field should, in $\rho \to 0$ limit, decompose into similar modes. Can group them into a "superfield"

$$\Psi(\eta, x) \equiv \phi^{(0)}(x) + \eta^{\mu} \phi_{\mu}^{(1)}(x) + \eta^{\mu} \eta^{\nu} \phi_{\mu\nu}^{(2)}(x) + \dots$$
 Lorentz acts as $x \to \Lambda x, \eta \to \Lambda \eta$

introduced in 1404.0675 – complementary pedagogical discussion in 2303.04816

- Continuous spin particle has modes of every helicity, that separate into singleton representations as $\rho \to 0$
- Helicity ±h modes typically described by gauge theory of rank-h tensor fields
 - Notably subtle many components: 2 physical, rest are pure gauge
- Continuous spin field should, in $\rho \to 0$ limit, decompose into similar modes. Can group them into a "superfield"

$$\Psi(\eta, x) \equiv \phi^{(0)}(x) + \eta^{\mu} \phi_{\mu}^{(1)}(x) + \eta^{\mu} \eta^{\nu} \phi_{\mu\nu}^{(2)}(x) + \dots$$
 Lorentz acts as $x \to \Lambda x, \eta \to \Lambda \eta$

introduced in 1404.0675 – complementary pedagogical discussion in 2303.04816

• Action:

$$S = \frac{1}{2} \int_{\eta x} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2 \text{ with } \Delta \Psi \equiv \partial_{\eta} \cdot \partial_x + \rho$$

What is Vector Superspace?

• Naively divergent integral – can regulate by analytic continuation of η^0 , or just divide by "volume" $\int_{\eta} \delta(\eta^2 + 1)$. Symmetry relates integral to differential operator $J_0(\sqrt{\partial_{\eta}^2})$, e.g.

$$\int_{\eta} \delta(\eta^2 + 1) \eta^{\mu} \eta^{\nu} = \frac{1}{4} g^{\mu\nu} \int_{\eta} \delta(\eta^2 + 1) \eta^2 = -\frac{1}{4} g^{\mu\nu}$$

·Basic job: relating off-shell Lorentz transformation to little group action on-shell

Basis states' orthonormality, tree unitarity of CSP exchange, and little group covariance of matrix elements all follow from one identity: Whenever $\delta(\eta^2 + 1)k \cdot \partial_{\eta} F(\eta) = 0$,

matrix elements all follow from one identity: whenever
$$\delta(\eta^2 + 1)k \cdot \delta_{\eta} F(\eta) = 0$$
,
$$\int_{\eta} \delta'(\eta^2 + 1)F(\eta) = \int_{C} F(\eta) \qquad C \text{ is unit circle of } \vec{\eta} \text{'s orthogonal to } \vec{k} \text{ (in any frame) ~ unit circle in "little group } E_2 \text{ plane"}$$

•Enables an enlarged spacetime symmetry that mixes spins Free action is invariant under a "bosonic supertranslation" $\delta x^{\mu} = \omega^{\mu\nu} \eta_{\nu}$ [Rivelles '14].

A Field Theory for All Helicities: A Bit of Intuition

When $\rho = 0$, action encodes familiar actions for tensor components, e.g.

$$\mathscr{L}[\Psi \to \phi(x)] = \frac{1}{2} \int_{\eta} \underbrace{\delta'(\eta^2 + 1)}_{\text{gives 1}} \underbrace{(\partial_x \Psi)^2 + \frac{1}{2}}_{\delta \chi} \delta(\eta^2 + 1) (\partial_x \cdot \partial_{\eta} \Psi)^2 = \frac{1}{2} (\partial_x \phi)^2$$

$$\mathcal{L}[\Psi \to \sqrt{2}\eta^{\mu}A_{\mu}] = \frac{1}{2} \int_{\eta} \delta'(\eta^{2} + 1) \underbrace{(\partial_{x}\Psi)^{2} + \frac{1}{2}}_{2(\eta_{\mu}\partial_{x}A^{\mu})^{2}} \delta(\eta^{2} + 1) \underbrace{(\partial_{x} \cdot \partial_{\eta}\Psi)^{2}}_{2(\partial_{\mu}A^{\mu})^{2}} = -\frac{1}{2} (\partial_{\mu}A_{\nu})^{2} + \frac{1}{2} (\partial_{\mu}A^{\mu})^{2}$$

But working in η -space directly is simple and powerful.

Analogy with Maxwell Action

Action

$$\int_{\mathcal{X}} -\frac{1}{2} (\partial_{\mu} A_{\nu})^2 + \frac{1}{2} (\partial \cdot A)^2$$

$$\frac{1}{2} \int_{x,\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2$$

Equation of Motion

$$\Box A_{\mu} - \partial_{\mu} \partial \cdot A = 0$$

$$\delta'(\eta^2+1) \square \Psi(\eta,x) - \frac{1}{2} \Delta(\delta(\eta^2+1)\Delta\Psi) = 0$$

Gauge Invariance

$$A_{\mu} \simeq A_{\mu} + \partial_{\mu} \epsilon(x)$$

$$\Psi(\eta, x) \simeq \Psi(\eta, x) + \left(\eta \cdot \partial_x - \frac{1}{2}(\eta^2 + 1)\Delta\right) \epsilon(\eta, x) + (\eta^2 + 1)^2 \chi(\eta, x)$$

For $\rho = 0$, a nice re-packaging of Fronsdal actions for all rank-h tensor fields.

For $\rho \neq 0$, Δ mixes tensor components of $\Psi \Rightarrow$ much simpler in η -space

Each result has 1- or 2-line proof, using standard IBP and two δ -fn identities:

$$\delta'(\eta^2 + 1)Df = \frac{1}{2}\Delta\left(\delta(\eta^2 + 1)f\right), \ \delta(\eta^2 + 1)\Delta De = \Box e$$

Gauge fixing and physical states

Covariant Gauge Fixing

$$\partial \cdot A = 0$$

$$\Delta\Psi(\eta,x)=0$$

Gauge-Fixed EOM

$$\square A_{\mu} = 0$$

$$\Box \Psi = 0$$

Residual Gauge Freedom

$$\Box \epsilon = 0$$

$$\Box \epsilon = \Delta \epsilon = 0$$

Physical states (helicity basis)

$$\psi_{\pm,k}(x) = e^{-ik\cdot x} \, \epsilon_{\pm}^{\mu}$$

$$\epsilon_{-} = \epsilon_{+}^{*}, \epsilon_{+} \cdot k = 0, \epsilon_{+} \cdot \epsilon_{-} = -2$$

$$\psi_{h,k}(\eta,x) = e^{-ik\cdot x} (\pm i\eta \cdot \epsilon_{\pm})^{|h|} e^{-i\rho\eta \cdot q}$$

 $q \cdot k = 1, q \cdot \epsilon_+ = 0$

Helicity basis states with $\rho \neq 0$ are simple functions of η , but **not** tensors! Another reason to work in vector superspace

Perspective on Free Field Theory

Good, so we can describe a continuous spin particle as a free particle.

Old no-go's were wrong, but so what? We know there are physical obstructions to helicity-3 interactions, but they also admit a free field theory.

From S-matrix perspective, can see this via Weinberg soft theorems

From field theory perspective, the problem is that you can't build a conserved current from matter.

Existence of free theory says nothing about consistency of interactions, but gives us a framework to start looking.

Coupling to currents

Current Term in Action

$$\delta S = -\int_{x} A^{\mu}(x) J_{\mu}(x)$$

$$\delta S = \int_{x,\eta} \delta'(\eta^2 + 1) \Psi(\eta, x) J(\eta, x)$$

Continuity condition from gauge-invariance

$$\partial_{\mu}J^{\mu}=0$$

$$\delta(\eta^2 + 1)\Delta J(\eta, x) = 0$$

EOM in suitable gauge

$$\Box A^{\mu} = J^{\mu}$$

Once we have found a suitable current, can use familiar machinery to compute physical quantities, e.g.

- ·Classical radiation and CSP-exchange forces [2303.04816]
- ·Scattering amplitudes [2308.xxxxx]

Ordinary EM Example

For technical reasons, we've worked with matter particles and their worldlines rather than matter fields.

Well-established but less familiar, so as a refresher let's look at a few E&M examples

$$S_{free}[z(\tau), E(\tau)] = \int d\tau \frac{\dot{z}^2}{2E} + \frac{1}{2}m^2E \qquad J^{\mu}(x) = \int d\tau \, q \, \dot{z}^{\mu}(\tau) \, \delta^{(4)}(x - z(\tau))$$

Einbein
$$E(\tau) \Rightarrow$$
 reparametrization invariant $E(\tau) = 1/m$ gives proper time parametrization.

$$J^{\mu}(x) = \int d\tau \, q \, \dot{z}^{\mu}(\tau) \, \delta^{(4)}(x - z(\tau))$$

$$\partial \cdot J(x) = -\int d\tau \, \partial_{\tau} \left[q \, \delta^{(4)}(x - z(\tau)) \right]$$

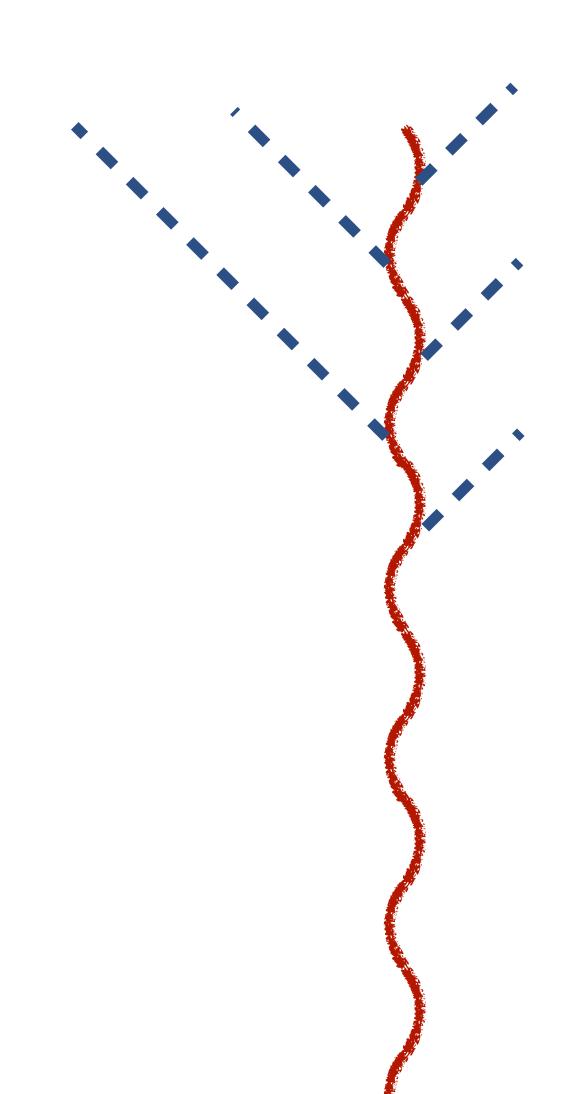
Conserved as long as worldlines only begin and end at charge-conserving vertices.

EM: Classical Radiation from a Moving Particle

$$\frac{dP_h}{d\omega d\hat{\mathbf{r}}} = \frac{\omega^2}{8\pi^2} |\epsilon_{h,k}^* J(\eta, k)|^2 \quad \text{with } \mathbf{k} = (\omega, \omega \hat{\mathbf{r}})$$

For simple harmonic motion, power

$$P_{Larmor} = \frac{e^2 \omega^2 v_0^2}{12\pi}$$



EM: Amplitudes

Compute amplitudes from path integral for worldline in EM field (Feynman 1950)

$$A(p, p', k_i, \epsilon_i) = \int_{\mathscr{P}[x, x']} Dz(\tau) e^{-S_{free}[z]} e^{-ip \cdot x} e^{ip' \cdot x'} \prod \int dt_i \left(\epsilon_i \cdot \dot{z}(t_i) e^{-ik_i \cdot z(t_i)} \right) \Big|_{LSZ}$$

Current and Maxwell field theory are all you need to know to build amplitudes! (More pieces needed for YM or GR theories with self-interacting fields)

EM: Amplitudes

Compute amplitudes from path integral for worldline in EM field (Feynman 1950)

$$A(p, p', k_i, \epsilon_i) = \int_{\mathscr{P}[x, x']} Dz(\tau) e^{-S_{free}[z]} \underbrace{e^{-ip \cdot x}}_{V_{in}} \underbrace{e^{ip' \cdot x'}}_{Out} \prod \int_{V_{out}} dt_i \underbrace{\left(\epsilon_i \cdot \dot{z}(t_i)e^{-ik_i \cdot z(t_i)}\right)}_{V_{\gamma}^{k_i, \epsilon_i}(t_i)} \Big|_{LSZ}$$

Modern "string-inspired" approach to evaluation (Strassler, Schubert, ...): matter Fourier phases and photon-current couplings \rightarrow vertex operators; solving Gaussian path-integral exactly leaves integral over the insertion points t_i .

Very different organization from Feynman diagrams but identical result.

Fully general treatment of loops, multiple worldlines, etc.

Matter Currents: The Key Ingredient

To couple a particle's worldline to CSP field, need to find current from worldline data satisfying continuity condition.

$$J(\eta, x) = \int d\tau f(x - z(\tau), \dot{z}(\tau), \eta) \quad \text{-- Worldline-local ansatz}$$

$$= \int d\tau d^4k \ e^{ik \cdot (z(\tau) - x)} f(k, \dot{z}, \eta), \text{ continuity condition } (-ik \cdot \partial_{\eta} + \rho) f = 0$$

General Solutions

Most general solution to continuity condition (up to total derivative terms) can be written as

$$f(k, \dot{z}, \eta) = e^{-i\rho \frac{\eta \cdot \dot{z}}{k \cdot \dot{z}}} \hat{g}(k \cdot \dot{z}) + \mathcal{O}X(k, \dot{z}, \eta)$$
 "Shape" terms

where free eom is $\delta'(\eta^2 + 1)\mathcal{O}\Psi = 0$

Analogous to charge radius etc. operators in E&M

- ⇒ As in E&M, shape terms do not couple to continuous spin radiation
- \Rightarrow Worldline interactions with radiation fully determined by \hat{g} .

But shape terms can qualitatively change the space-time support of the current, as well as couplings to off-shell CSPs.

Currents in Space-Time

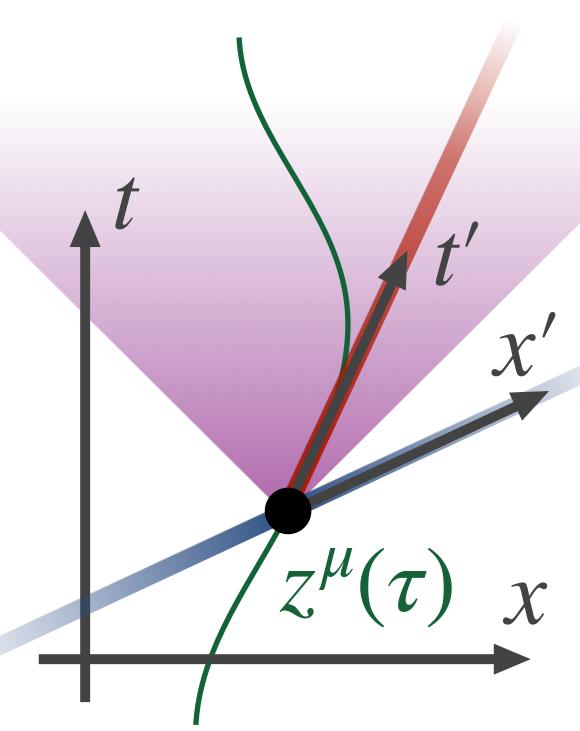
Although shape terms don't couple to continuous spin radiation, they **can** change the spacetime localization of the current – e.g. family of currents

$$f(k,\dot{z},\eta) \propto e^{-i\rho \frac{\eta \cdot V(\dot{z},k)}{k \cdot V(\dot{z},k)}}$$

Satisfy continuity condition for any V – differ only by shape terms. But they have different localization properties:

$$V=\dot{z}$$
 "temporal"
$$V=k+\beta\rho\dot{z}$$
 "inhomogeneous"
$$V=k-(k\cdot\dot{z})\dot{z}$$
 "spatial"

Parametrization of general solution in terms of "temporal" current was arbitrary – not physically privileged.



Currents in Space-Time: Causality

Some ansatz currents admit retarded/advanced forms supported in source's forward/backward lightcone → manifestly causal equations of motion

$$\partial_x^2 \Psi(x) \propto \int d\tau j_R(x - z(\tau))$$
 $m \ddot{z}^{\mu}(\tau) \propto \int \Psi(\eta, x) j_A(x - z(\tau))$

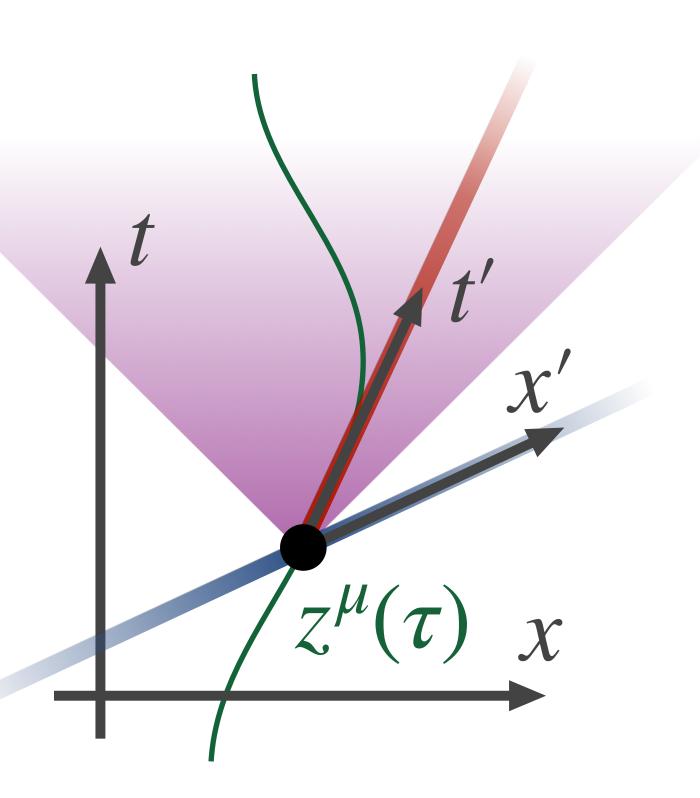
Field at point depends on particle trajectories in past causal cone

Particle's acceleration at point depends only on fields in its causal past

This feature, and detailed non-local structure, suggestive of integrating out intermediate fields. We suspect this can be done at Lagrangian level to yield local & manifestly causal action, but no concrete realization yet.

(Could Rivelles' supertranslation-like symmetry be a hint?)

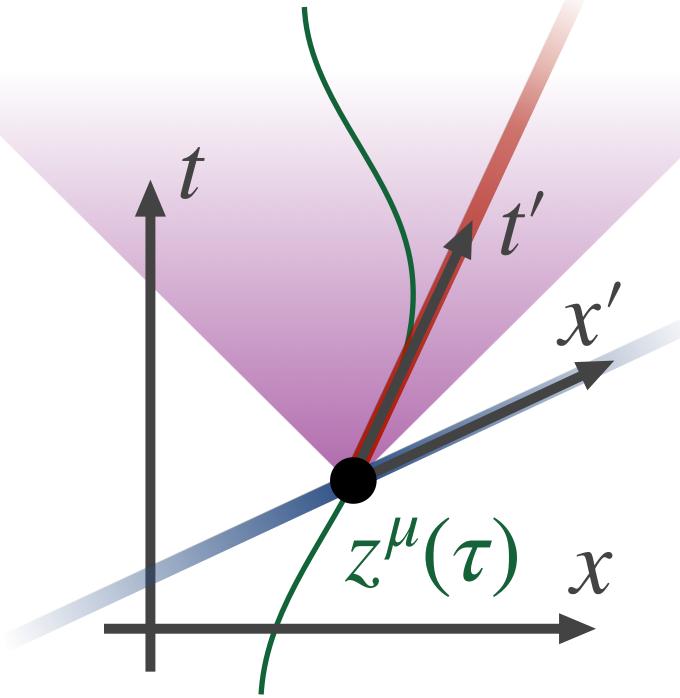
Even equal-time interactions (c.f. Coulomb-gauge QED) can yield causal dynamics – could this also happen for less causal-looking continuous spin currents?



Shape Questions and Off-Shell Physics

Different "current shapes" do have different physics – whenever off shell continuous spin fields are involved, e.g.

- classical static force law (1/r for spatial and temporal, with ρ -corrections for inhomogeneous) and velocity-dependent corrections
- tree-level matter-matter scattering via CSP exchange
- renormalized CSP and matter propagators



Exploring consistency properties of these less universal amplitudes will likely help to understand which current structures are consistent, physically "minimal".

The path(s) forward

- Goal: Kill or define theory more sharply/completely
- Classification of appropriately conserved, WL-local worldline currents [2303.04816]
 - → "Shut up and calculate" focused on the wide variety of "universal" reactions (classical and amplitudes) that involve only on-shell CSP radiation, and therefore are unaffected by shape.
 - →Currents are suggestive of an extended object with more d.o.f., or additional spacetime fields. Looking for **inspired guess** for the structure of the source currents, i.e. "CSP string" could be fruitful, but not a prerequisite to progress.
 - → Already have **definite rules** for constructing general amplitudes from given current. Demanding sensible properties for off-shell CSP amplitudes (e.g. 2-point functions) will likely single out correct current within each universality class, i.e. "CSP bootstrap"

General Solutions

Most general solution to continuity condition (up to total derivative terms) can be written as

$$f(k, \dot{z}, \eta) = e^{-i\rho \frac{\eta \cdot \dot{z}}{k \cdot \dot{z}}} \hat{g}(k \cdot \dot{z}) + \mathcal{O}X(k, \dot{z}, \eta)$$

Worldline interactions with on-shell radiation fully determined by \hat{g} . Expanding \hat{g} in Taylor series gives "universality classes" of currents:

$$\hat{g} = \begin{cases} \frac{g}{\rho} k \cdot \dot{z} \\ (k \cdot \dot{z})^n / \Lambda^n \end{cases}$$

scalar-like current
Classical results in these cases
are main focus of 2303.04816

non-minimal currents*

GR-like special case – more later

Limiting Behavior: $k^0 \gg \rho$

Look at small- ρ behavior of current:

$$f(k, \eta, \dot{z}) = -\frac{e}{\rho} k \cdot \dot{z}(\tau) e^{-i\rho \frac{\eta \cdot \dot{z}}{k \cdot \dot{z}}}$$

$$= -\frac{e}{\rho}k \cdot \dot{z}(\tau) + ie \, \eta \cdot \dot{z}(t) + \mathcal{O}(\rho)$$

Physically irrelevant (changes *J* by total τ-derivative)

η-space form of usual

vector current ⇒ Leading physical effects should be QED-like!

$$J(\eta, x) = \int d\tau d^4k \ e^{ik \cdot (z(\tau) - x)} f(k, \dot{z}, \eta)$$

Radiation from a Moving Particle

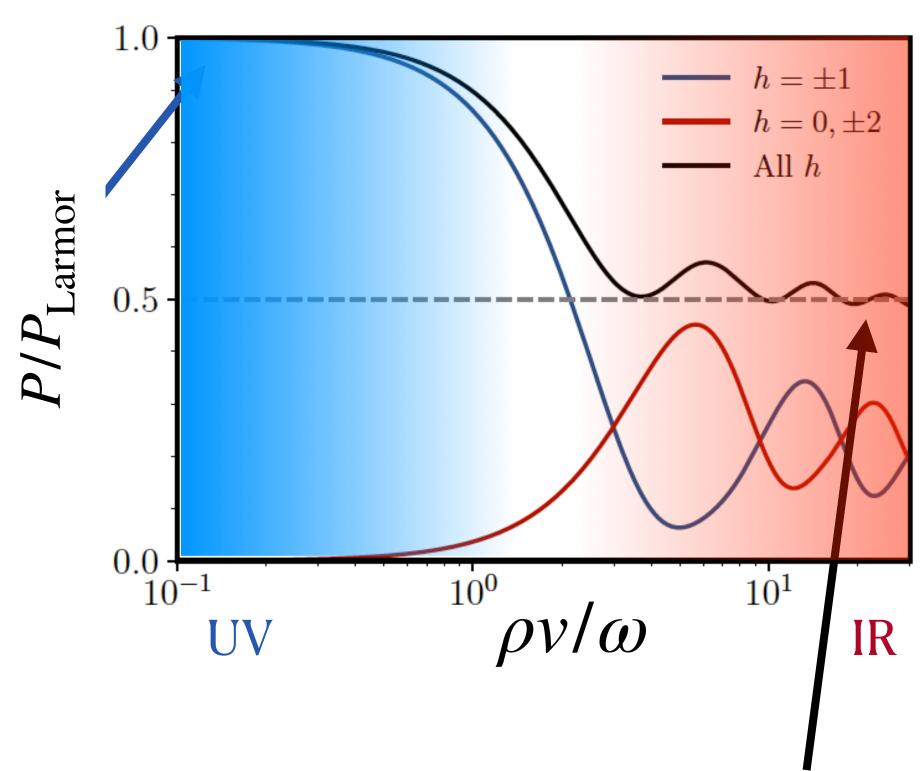
Indeed, for vector-like currents,

$$P = \frac{e^2 \omega^2 v_0^2}{12\pi} \left(1 - \frac{9}{80} \frac{\rho^2 v_0^2}{\omega^2} + \dots \right)$$

Standard Larmor power

For small $\rho v/\omega$, power matches Larmor and dominated by h=±1 modes

(Physical manifestation of formal correspondence noted earlier)



At large $\rho v/\omega$, power spread among many modes, harmonics but total power emitted has finite limit.

Structure of the calculation is identical to QED $-\eta$ -dependent vertex operator yields "unconstracted be contracted with basis wave-functions to get polarization amplitudes.

$$M(p_0, p_3, \{k_1, \eta_1\}, \{k_2, \eta_2\}) = 2 \int_{-1}^{1} dx \left(\eta_1 - \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} k_1 \right) \cdot \left(\eta_2 - \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)} k_2 \right) e^{-i\rho \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} - i\rho \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)}}$$

$$P_{1,2}(x) = p_3 - p_0 \pm x k_{2,1}$$

 \rightarrow at endpoints $x = \pm 1$, these are momenta appearing in s(u)-channel photon vertex

Polarization amplitudes are Fourier transforms of this expression,

$$A(p_0, p_3, \{k_i, h_i\}) = \int \frac{d\phi_i}{2\pi} e^{ih_i\phi_i} M(p_0, p_3, \{k_i, \eta_i(\phi_i)\})$$

$$\eta(\phi) \text{ lies on unit circle orthogonal to k, e.g.}$$

$$(0, \cos\phi, i\sin\phi, 0) \text{ for } k = (k, 0, 0, k)$$

(1) no unphysical singularities, (2) sensible at physical singularities, (3) finite angle-differential cross-section at all energies.

High Energy Limit

$$M(p_0, p_3, \{k_1, \eta_1\}, \{k_2, \eta_2\}) = 2 \int_{-1}^{1} dx \left(\eta_1 - \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} k_1 \right) \cdot \left(\eta_2 - \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)} k_2 \right) e^{-i\rho \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} - i\rho \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)}}$$

This clearly has smooth $\rho \to 0$ limit (just drop phase).

Linear in η_1 and η_2 implies only Fourier modes $h=\pm 1$ survive. [In this case, $\eta_i\sim \epsilon_i$]

The integral above is simply a Feyman parametrization of the standard scalar-QED result! (This form makes gauge invariance and permutation symmetry manifest, but obscures both locality and vanishing of "both +" amplitudes)

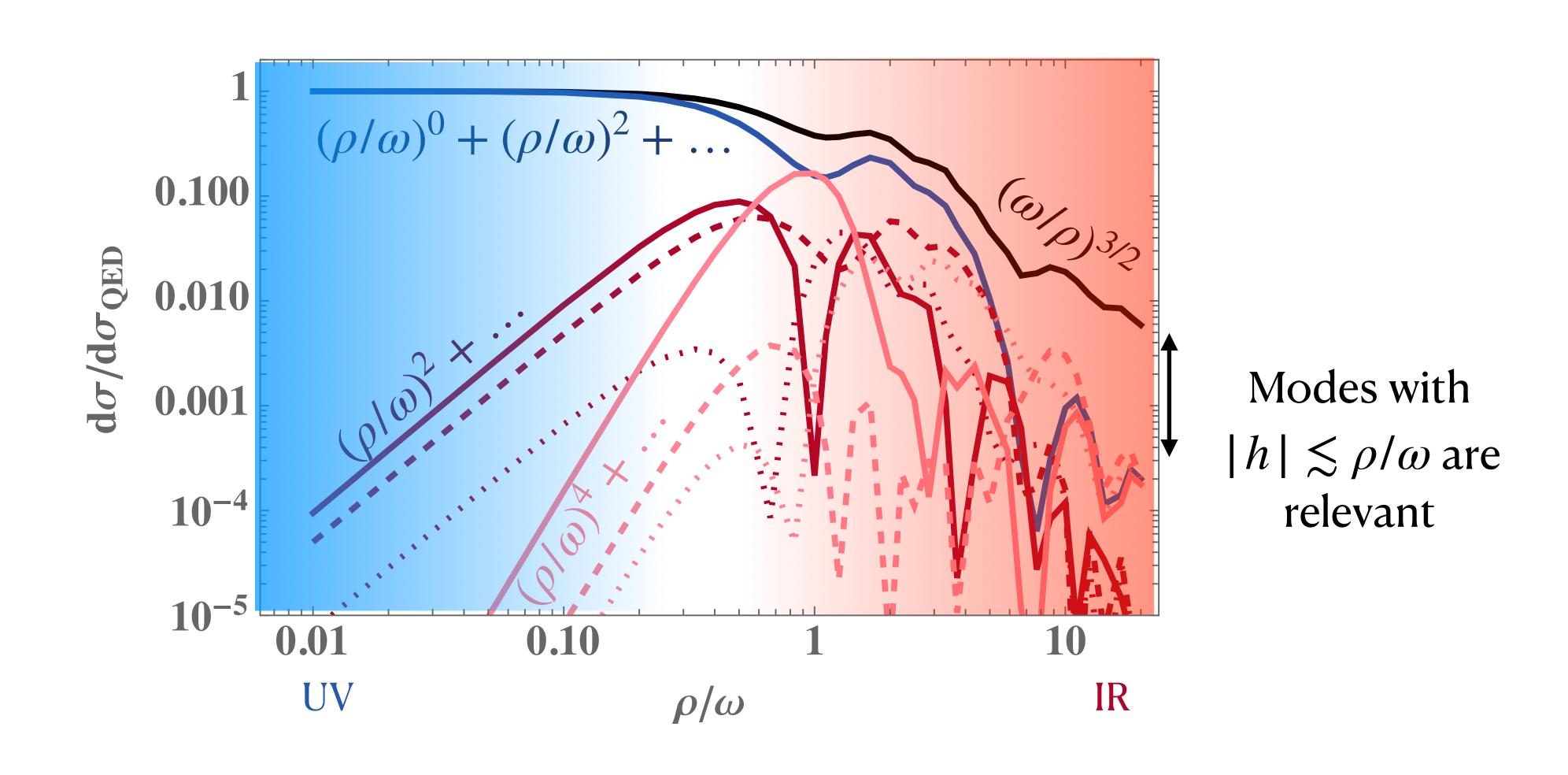
For high-energy scaling, simply Taylor-expand in ρ .

Amplitude scaling at high energies:

	h ₁ =-2	h ₁ =-1	h ₁ =0	h ₁ =1	h ₁ =2	
h ₂ =-2	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	
h ₂ =-1	Ο(ρ/Ε)	Ο(ρ ² / E ²)	Ο(ρ/Ε)	O(1)	Ο(ρ/Ε)	
h ₂ =0	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	
h ₂ =1	Ο(ρ/Ε)	O(1)	Ο(ρ/Ε)	Ο(ρ ² / E ²)	Ο(ρ/Ε)	
h ₂ =2	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	

Like classical radiation, becomes democratic but with finite sum at lower energies.

Compton-Like Cross-Section: UV to IR



Scalar-Like Radiation

Analogous results for $\hat{g} = g$

Power radiated in minimally coupled scalar

$$P = \frac{g^2 \omega^2}{24\pi} \times \begin{cases} v_0^2 \left(1 - \frac{(\rho v/\omega)^2}{20} + \dots\right) & h = 0\\ (\rho v/\omega)^2 / 2 + \dots & h = \pm 1\\ |h| \ge 2 \end{cases}$$
Subleading in $\rho v/\omega$

$$\bar{P} = \begin{cases} g^2 a_0^2 / 24\pi & a_0 \gg \rho v_0^2 \\ g^2 \rho a_0 / 8\pi^2 & a_0 \ll \rho v_0^2 \end{cases}$$

Power falls off at low acceleration, but *slower* than for ordinary scalar

Messy expression, but (1) no unphysical singularities, (2) sensible factorization limit at physical singularities, (3) at energies ρ , recover scalar amplitudes,

	h ₁ =-2	h ₁ =-1	h ₁ =0	h ₁ =1	h ₁ =2
h ₂ =-2		O(ρ ³ /E ³)	O(ρ ² /E ²)	O(ρ ³ /E ³)	
h ₂ =-1	O(ρ ³ /E ³)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /Ε ²)	O(ρ ³ /E ³)
h ₂ =0	O(ρ ² /E ²)	Ο(ρ/Ε)	$\frac{1}{s} + \frac{1}{u} - \frac{\rho^2}{8} \frac{p_{\perp}^2(s^3 + u^3)}{s^3 u^3} + \dots$	Ο(ρ/Ε)	O(ρ ² /E ²)
h ₂ =1	O(ρ ³ /E ³)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /Ε ²)	O(ρ ³ /E ³)
h ₂ =2		O(ρ ³ /E ³)	O(ρ ² /E ²)	O(ρ ³ /E ³)	

Messy expression, but (1) no unphysical singularities, (2) sensible factorization limit at physical singularities, (3) at energies ρ , recover scalar amplitudes,

	h ₁ =-2	h ₁ =-1	h ₁ =O	h ₁ =1	h ₁ =2
h ₂ =-2		O(ρ ³ /E ³)	O(ρ ² /E ²)	O(ρ ³ /E ³)	
h ₂ =-1	O(ρ ³ /E ³)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	O(ρ ³ /E ³)
h ₂ =0	O(ρ ² /E ²)	Ο(ρ/Ε)	$\frac{1}{s} + \frac{1}{u} - \frac{\rho^2}{8} \frac{p_{\perp}^2(s^3 + u^3)}{s^3 u^3} + \dots$	Ο(ρ/Ε)	O(ρ ² /E ²)
h ₂ =1	O(ρ ³ /E ³)	O(ρ ² /E ²)	Ο(ρ/Ε)	O(ρ ² /E ²)	O(ρ ³ /E ³)
h ₂ =2		O(ρ ³ /E ³)	O(ρ ² /E ²)	O(ρ ³ /E ³)	

(4) at energies $\ll \rho$, angle-differential cross-section is finite

Model-Building Opportunities

One tantalizing (but very speculative and premature!) potential application: Hierarchy Problem = "scalars that generate long-range 1/r potentials are unnatural"

Scalar with nonderivative couplings to heavy matter receives radiative mass corrections

Goldstones have shift symmetry – protects mass terms, but also forbids non-derivative couplings Continuous spin field admits nonderivative scalar-like interactions, and Lorentz requires it to stay massless to avoid d.o.f. discontinuity (aka gauge "symmetry" protects mass)

If these models are renormalizable, they admit something close to a radiatively stable massless scalar.

Perhaps related mechanism can stabilize massive but light Higgs?

Graviton-Like CSPs

Linearized graviton couples to worldline current $m \int d\tau \, \dot{z}^{\mu} \dot{z}^{\nu} \, \delta^{(4)}(x-z(\tau))$.

This is not physically conserved for an accelerating worldline – must sum over $T^{\mu\nu}$ for all worldlines, and fields through which they interact.

But there are limits where the non-conservation is "small" and linearized treatment is useful.

This "linearized GR current" has a natural generalization to $\rho \neq 0$. Graviton soft factor arguments do too.

But, like $\rho = 0$ perturbative GR, need universal couplings (including self-interactions) for full consistency.

What else can one compute?

Universal: depend only on \hat{g}

- Radiation from worldline undergoing a single instantaneous kick -reproduces soft factor results found in 2013.
- Force on a particle induced by plane-wave radiation background
- Continuous spin field $\Psi(\eta, x)$ sourced by a particle at rest or in motion
 - Inter-particle force laws (static force-law is just 1/r for our simple ansatz phases cancel out
 - but other ansatz currents can give $O(\rho r)$ corrections)

Depend on "shape terms" – we have only looked at simplest example currents

- QM in path integral
 - Continuous spin radiation/absorption amplitudes for free scalar matter
 - CSP-mediated atomic transitions (toy bosonic atoms)
 - Tree amplitudes with intermediate CSPs
 - Wavefunction renormalization of continuous spin field
 - Continuous spin fields in loops
- Classical response of macroscopic detectors to continuous spin radiation

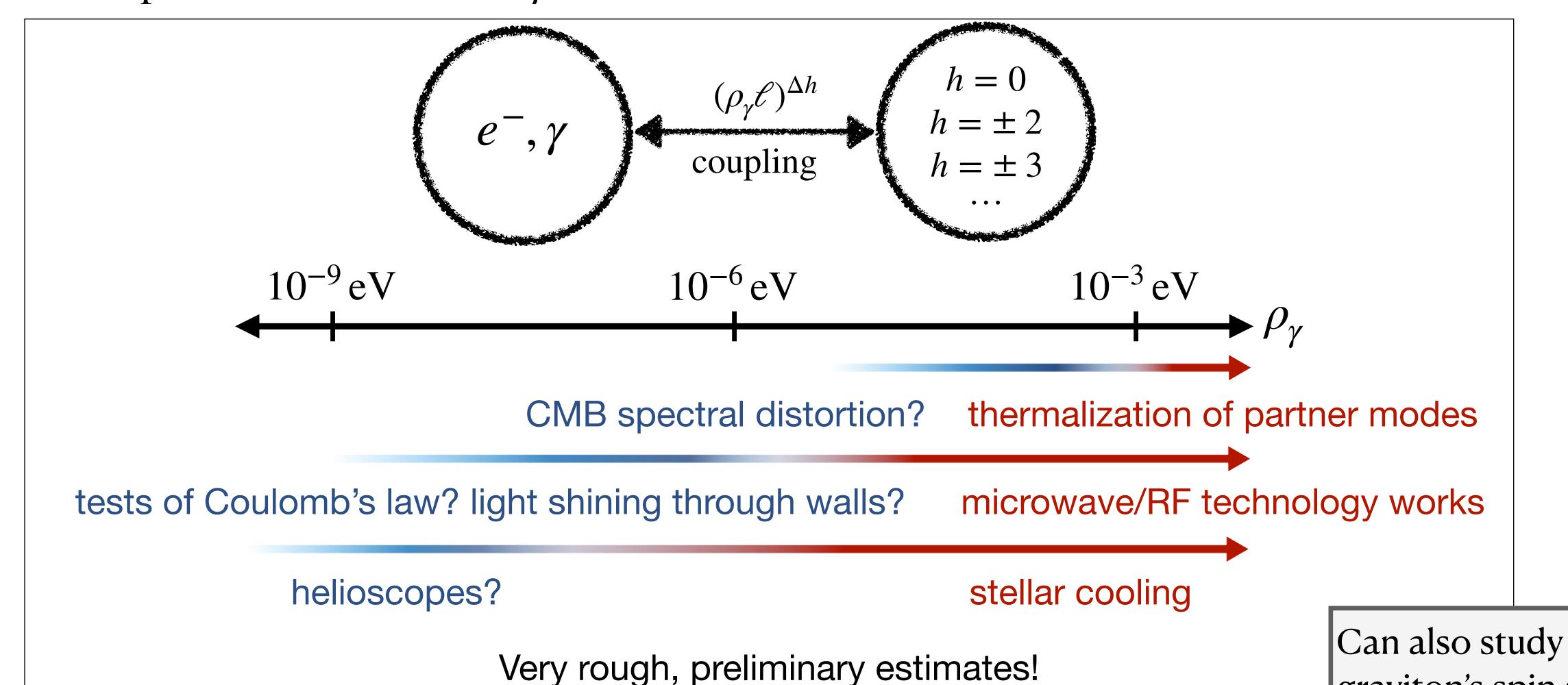
2308.XXXXX

tion + currents from fermionic ratter worldlines probably matter worldlines probably similar but not ver car.

Experimental Opportunities

Continuous spin field with vector-like coupling looks like photon + a dark sector. Could our photon have non-zero ρ ?

Kevin Zhou — Continuous Spin



graviton's spin scale!

Conclusions

- Lorntz invariance → massless particles have a spin-scale. Is it zero or non-zero?
- The non-zero option makes more sense than previously thought, and has testable consequences
- If inconsistent, deserves a proper burial
- If viable, we should think of the Standard Model as an effective theory with both UV and IR completions.

