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In this talk: Quantum gravity # UV
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yeoe=observables in QG:

Anything more local” ?




One known difficulty (gauge invariance) is to identify an
“event” for each off-shell geometry: this is highly arbitrary
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However, observers do not care
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Unruh-DeW.itt detector Classical source

The detector clicking is an event!
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A (non-relativistic) fluid of observers

Dubovsky, Gregoire, Nicolis, Rattazzi, 2006
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S = /d4a:\/—gR — ,u4/d4a:'\/—g\/det(g“’/8ﬂx16,/xj) + Sn[®] + ...

— The three scalar fields xl, xz, x> label the observers.

— x! = const. is a geodesic on each classical solution

— X! = x": unitary gauge. \If[hl-]-(Xi),xi(Xk), ] o ‘PU[hl-j(xI), o]

— If no vorticity initially — N' = 0, x0 proper time of the observers

gupdatda” = —dt* + ~;;dz’ da’



In the observers’ frame one can calculate e.g. (G, (X, y))
and study the causality relations among the observers

It is easier to use a proxy instead

d(z,y) = (d*(z,y))
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In the observers’ frame one can calculate e.g. (G, (X, y))
and study the causality relations among the observers

It is easier to use a proxy instead

d(z,y) = (d*(z,y))

<d2 (0, x)>:<gw>r“x’/ + ggu%} actaxt P — 1—12 <ga5FZ‘VF§(>— (gw,p%) ata¥ P’ + O(x5)
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This is not the geodesic distance of any metric




Non-additive distances (Euclidean signature)

Problem:
given d(x,z) and 0 < R < d(x,z): Find y s.t.

d(x,y) = R, d(y,z) =d(x,7) — R
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Problem:
given d(x,z) and 0 < R < d(x,z): Find y s.t.

d(x,y) = R, d(y,z) =d(x,7) — R

X X X

Additive: Subadditive: Superadditive:
only one solution no solution infinite solutions



Non-additive distances (Euclidean signature)

Problem:
given d(x,z) and 0 < R < d(x,z): Find y s.t.

d(x

Similar to chordal distances

A&y

Additive: S— u_baddlt_lve
only one solution .

Superadditive:
Infinite solutions



Non-additive distances

dx,y) — gﬂy(x) Always possible

1 o 0

_ : 2
g,ul/(x) - 2 yll—I>I£lU 8:5“ 8yl/d (Qj,y)

g,,(x) = d(x,) Only if d(x, y) is additive

Chordal distance analogy
You need e.g. extrinsic curvature to calculate d(x, y)



Measuring non-additivity

If additive, d(x, y) has unit gradient

Hamilton-Jdacobi equation for a particle S = —m/df\/—g“’/a':“:i:’/

g"" 0,50, + m? = (



Measuring non-additivity

If additive, d(x, y) has unit gradient

Hamilton-Jacobi equation for a particle S=-m / AT/ —ghv ki

9" 9,50,8 +m? =0

Additive: Subadditive: Superadditive:
C=0 C<0 C>0



Lorentz signature 8,Y)
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Lorentz signature (C=0) 8u/()

8,,(X)




Lorentz signature (C=0) 8u(y) .




Lorentz signature (C<O)




Lorentz signature (C>0)




Calculating non-additivity

Coordinate expansion:

1

C(0,2) = 7 (§°° (Cagu){Tp0) — (95T, Th)) 242”2027 + O(a%)

Non-additivity builds up at large separation



Calculating non-additivity

Observers’ frame: guvdrtdx” = —dt* + ~;;dz' da’
C = 117 (i) — (Fig) (ik)) ' x%x <+— positive definite
— ((VP9505q5) — YU i) (Fgs)) o2 2 <+— negative definite

— 2 (<Ffjﬁ/pk> — <Fpij><7qk>) ta'a! "

— (VP9 i Tgt) — APUT i W Caper)) mixjkal} . <+— negative definite
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E.g. Thermal state of gravitons: C'(0,x) ~

— ot at M, ____— ~H™! IF gravitons were in eq.
effect important a ~—
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(With F. Nitti and A. Taskov, to appear)

The relativity of the event

The clicking has definite coordinates xX”Ck in the A-frame




(With F. Nitti and A. Taskov, to appear)

The relativity of the event

In any other frame (e.g. that of a boosted set of observers B)
it is has indefinite coordinates

Probabilistic coordinate transft.



(With F. Nitti and A. Taskov, to appear)

Application: the event horizon in JT gravity

Different “frames” discussed in
Blommaert, Mertens, Verschelde "Rods and Clocks in JTgravity” 1902.11194




(With F. Nitti and A. Taskov, to appear)

Application: the event horizon in JT gravity

Different frames” discussed in
Blommaert, Mertens, Verschelde "Rods and Clocks in JTgravity” 1902.11194

definite surface in the fuzzy in the
“lightlike frame” “spacelike geodesics frame”
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BACKUP SLIDES



Result in Euclidean signature:

Average distances always subadditive

Similar to chordal distances




gupdztdz” = —dt?® + vijdx' da’

Lorentz signature (unitary gauge)
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— No non-additivity along time (x = 0).



g dxtdz’ = —dt* + v ;dz'da’

Lorentz signature (unitary gauge)
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— No non-additivity along time (x = 0).

— Negative definite pieces



guvdatda” = —dt® + ~;;da’ da?

Lorentz signature (unitary gauge)

C:4

— No non-additivity along time (x = 0).
— Negative definite pieces

— Positive definite



—xamples:

— Superposition of plane waves: C < 0

— Fluctuations around homogeneous background: C < 0

T4
Thermal state of gravitons: C(0,x) ~ WAx4
P
Mp
effect importantat £ ~ —
T2

1
— FRW: C <0 if w>—§



Causality

Given (d*(x, y)) one can define a metric tensor (&) = &

1 0 0

_ L . 2
g,ul/(x) — _5 yh—I>Izlc Ot 8y,/ <d (xvy»

But there is more to (d*(x, y)) than (&) !

(8,,)Ax"Ax* = 0: where we expect the photon to be detected
in the immediate vicinity of the emission.

Further away: see where (d*(x,y)) = 0



Subadditive causality (C < 0)
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Subadditive causality (C < 0)
1 0d*(z,y) 0d*(x,y)

C(xvy) — 4

uv L d2
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Two causal structures at play. One rigid defined at each point. One
dependent on the two extremes x and y.
Photons are "prompt” wrt the rigid structure given by S



Subadditive causality (C < 0)
1 0d?*(x,y) 0d*(x,y)

C(xvy) = Z ay'u 8yy

G 9" (y) — d*(x,y)
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This is not the trajectory
of any light ray.
It is just where the ensemble
of events where we expect
to receive it

Two causal structures at play. One rigid defined at each point. One
dependent on the two extremes x and y.
Photons are "prompt” wrt the rigid structure given by S
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Relativity 2.0: the relativity of the event

MinkowskKi
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(w/ F. Nitti, A. Taskov,
A. Tolley, to appear)
see also 1902.11194

Relativity 2.0: the relativity of the event

/ /
P(z'|z)
How does d(x, y)
transform?

MinkowskKi



Conclusions:

* [he metric is not enough!
» Effect generically small in perturbative situations
* A lot of potential applications

e New mathematical structures...?



Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion
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We want to evaluate d(:L‘, y) — \/<d2 (377 y)>

The unitary gauge coordinates x drop from averages



Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

1 1
<d2 (0, a:)>:<gw>c“a:'” + igW}x“x”x’) T <ga5FZ‘VF[B)O>— xqw,p%) ¥ 2P x’ + O(z°)

We want to evaluate d(:L‘, y) — \/<d2 (377 y)>

The unitary gauge coordinates x drop from averages

w—>

1 9 9 The metric tensor defined
Guv(T) = -5 lim 5 B d*(xz,y)  locally with d(x, y) is
’ / nothing else than (g) !

(@(0,2)) = (g (0))aha” + ...




Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

v 1 v 1 : « 8\ v o
(@20, D)=z + {ouu 12 2? — 75 (00511, L )= Ko o) 22227 + O(a”)
Terms higher than linear cannot be reproduced by an average metric
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Non-additivity builds up at large separation. Can we infer about the sign?



Distance within a normal neighborhood

Geodesic distance can be expressed in a coordinate expansion

<d2 (0, x) :<gw>c“a:'” + 1gW,>x“x’/x” T (:qagfﬁyl“g(;}— xqw,p%) iz 2Pz’ 4+ O(x°)

Terms higher than linear cannot be reproduced by an average metric
pr= po

1
C(O,x) — Z (gaﬁ<rauV><Fﬁpa> — <gaﬁra o >) et alx? + O(Zﬁ)

Non-additivity builds up at large separation. Can we infer about the sign?
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We can actually calculate it!

Example: thermal state of gravitons at temperature 1°

M
C'(0,z) ~ M—]%Ax4 &< effect important at £ ~ T_§

Conjecture: Average distances are generally subadditive in QG



Superadditive causality (C > 0)

T<y Ny=<z + T <z

Conjecture: Subadditivity the outcome of evolution
from relatively “standard” initial conditions



The Third-Point-Problem: differential version

dy,z) = R
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The Third-Point-Problem: differential version

dy,z) = R

<
y
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TPP:

d(z,y) + d(y,z) = d(z, 2)

od(x, z) .
X * 0z =

The size of the gradient of d(x, z) in z determines how many
solutions to the TPP: the character of d(x, 2)




The Third-Point-Problem: differential version

dy,z) = R

<
y
/R — 0 d(z,y) =d(y, z) 1 8déi;z) n'R

TPP:

d(z,y) + d(y,z) = d(z, 2)

od(x, z) .
X * 0z =

The size of the gradient of d(x, z) in z determines how many
solutions to the TPP: the character of d(x, 2)

Additivity = the gradient of d(x, z) in z has unit norm



