Building the impedance model of a real machine

Benoit Salvant for the CERN Impedance Working Group, impedance team and BE-ABP/HSC section

David Amorim, Sergey Antipov, Gianluigi Arduini, Sergey Arsenyev, Mario Beck, Nicolo Biancacci, Oliver Brüning, Emanuela Carideo, Fritz Caspers, Aaron Farricker, A. Grudiev, Thomas Kaltenbacher, Eirini Koukovini-Platia, Patrick Kramer, Alex Lasheen, Elias Métral, Mauro Migliorati, Nicolas Mounet, Nasrin Nasresfahani, Serena Persichelli, Branko Kosta Popovic, Tatiana Rijoff, Giovanni Rumolò, Elena Shaposhnikova, Bruno Spataro, Jose Varela, Vittorio Vaccaro, Christine Vollinger, Na Wang, Carlo Zannini, Bruno Zotter, CERN

Simon White, ESRF

Ryutaro Nagaoka, SOLEIL

Victor Smaluk, BNL

Acknowledgments:

Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook

Note: strong bias towards impedance of synchrotrons in this talk
Impedance?

- When a beam of ultra-relativistic charged particles traverses a device which
 - is not a perfect conductor
 - or is not smooth
 it will produce electromagnetic wake fields that will perturb the following particles
 → wakefields (in time domain) or impedance (in frequency domain)

Impact of impedance?
1) Energy is lost by the beam
2) Kicks to following particles (in longitudinal and transverse planes)

→ Are these impedance perturbations an issue?
Impact of impedance?

1) Energy is lost by the beam \rightarrow dissipated in surrounding chambers \rightarrow damage and outgassing
2) Resonant kicks to following particles \rightarrow instabilities \rightarrow beam loss and blow-up

Damaged LHC equipment:

Cracked ferrite ring of synchrotron light monitor

LHC transverse instability observed in 2011

- More beam intensity \rightarrow more perturbations \rightarrow more damage and beam quality issues
- Impedance effects are limiting the performance of many accelerators
- Requires strict follow-up, impedance minimization and support
 \rightarrow mandate of the Impedance Working Group at CERN

[Mounet, 2012]
Agenda

- **Impedance?**
 - Some useful definitions
 - Focus on driving and detuning impedances
 - Driving and detuning impedances and beam observables
- What is an impedance model?
- Why build an impedance model?
- How to build an impedance model?
- Examples of benchmarks
- Outlook
Some useful impedance definitions

- **Wake potentials** $W(s)$:
 integrated force F generated by **source bunch** (1) of longitudinal distribution $\rho(s)$ on a **witness particle** (2) following at a distance s.

 \[
 W_{x,y,z}(s) = \frac{1}{q_1 q_2} \int_0^L F_{x,y,z}(s,z) \, dz
 \]

- **Wake functions** $G(s)$:
 wake potential for which the source is a point charge

 \[
 G(s) = i \text{FT} \left(\frac{\text{FT}(W(s))}{\text{FT}(\rho(s))} \right)
 \]

- **Beam impedance** $Z(\omega)$
 Fourier Transform (FT) of the wake function

 \[
 Z(\omega) = \text{FT}(G(s))
 \]

- **Effective impedance** Z_{eff} (Z_{eff}/n for longitudinal)
 impedance integrated over the bunch oscillation spectrum $h(\omega_k)$

 \[
 Z_{\text{eff}} = \sum_k Z(\omega_k) \frac{\omega_{\text{rev}}}{\omega_k} h(\omega_k) \\
 \frac{Z_{\text{eff}}}{n} = \frac{\sum_k Z(\omega_k) \omega_{\text{rev}} h(\omega_k)}{\sum_k h(\omega_k)}
 \]

 - $\omega_{\xi} = Q \omega_{\text{rev}} \frac{\xi}{\eta}$
 - Chromatic frequency shift

 \[
 \xi = \frac{\Delta Q}{Q} / \frac{\Delta p}{p}
 \]

 - Chromaticity

 Q
 tune, number of oscillations per turn

Accelerator element

\[y \quad y_1 \quad 2 \quad \text{1} \quad \text{3} \quad z \]

\[y_2 \]

\[s \]
Some useful impedance definitions

- **Wake potentials** $W(s)$:
 integrated force F generated by **source bunch (1)** of longitudinal distribution $\rho(s)$ on a **witness particle (2)** following at a distance s.

- **Wake functions** $G(s)$:
 wake potential for which the source is a point charge

- **Beam impedance** $Z(\omega)$
 Fourier Transform (FT) of the wake function

- **Effective impedance** Z_{eff} (Z_{eff}/n for longitudinal)
 impedance integrated over the bunch oscillation spectrum $h(\omega)$

- **Rigid beam approximation:**
 → element **assumed infinitely thin**
 → all **interactions lumped into kicks**
Some useful impedance definitions

- Wake potentials $W(s)$:
 \to typical output of wakefield simulations

- Wake functions $G(s)$:
 \to typical input for beam dynamics simulations

- Beam impedance $Z(\omega)$
 \to typical output from analytical impedance codes

- Effective impedance Z_{eff}
 \to can be computed from measured beam observables
 - synchrotron and betatron tune shifts
 - bunch lengthening
 - Instability thresholds and growth rates

\Rightarrow wake potentials \neq wake functions
Some useful impedance definitions

- Wake potentials $W(s)$:
 \rightarrow typical output of wakefield simulations

- Wake functions $G(s)$:
 \rightarrow typical input for beam dynamics simulations

- Beam impedance $Z(\omega)$
 \rightarrow typical output from analytical impedance codes

- Effective impedance Z_{eff}
 \rightarrow can be computed from measured beam observables

$Z_{\text{eff}} = A(h) + jB(h)$

\rightarrow Wake potential close to wake function if bunch small enough
Some useful impedance definitions

- Wake potentials $W(s)$:
 \rightarrow typical output of wakefield simulations

- Wake functions $G(s)$:
 \rightarrow typical input for beam dynamics simulations

- Beam impedance $Z(\omega)$
 \rightarrow typical output from analytical impedance codes

- Effective impedance Z_{eff}
 \rightarrow can be computed from measured beam observables

$Z_{\text{eff}} = A(h, \xi) + jB(h, \xi)$

\rightarrow Changing chromaticity shifts the sampled impedance frequencies
\rightarrow Transverse Z_{eff} varies with both bunch length and chromaticity
Agenda

• Impedance?
 - Some useful definitions
 - Focus on driving and detuning impedances
 - Driving and detuning impedances and beam observables
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook
Focus on transverse impedance: driving and detuning contributions

- linear terms of the wake with the source and witness transverse offsets

\[
W_y(y_1, y_2, s) = W_y^0(s) + W_{y,\text{driv}}(s) y_1 + W_{y,\text{det}}(s) y_2 + o(y_1, y_2)
\]

\[
Z_y(y_1, y_2, \omega) = Z_y^0(\omega) + Z_{y,\text{driv}}(\omega) y_1 + Z_{y,\text{det}}(\omega) y_2 + o(y_1, y_2)
\]

<table>
<thead>
<tr>
<th></th>
<th>constant</th>
<th>Driving</th>
<th>Detuning</th>
<th>Higher order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_y)</td>
<td>(W_y^0)</td>
<td>(W_{y,\text{driv}})</td>
<td>(W_{y,\text{det}})</td>
<td>(o(y_1, y_2))</td>
</tr>
<tr>
<td>(Z_y)</td>
<td>(Z_y^0)</td>
<td>(Z_{y,\text{driv}})</td>
<td>(Z_{y,\text{det}})</td>
<td>(o(y_1, y_2))</td>
</tr>
</tbody>
</table>

- change orbit
- can modify the tunes
- neglected
Focus on transverse impedance: driving and detuning contributions

\[Z_y(y_1, y_2, \omega) = Z_y^0(\omega) + Z_{y,\text{driv}}(\omega) y_1 + Z_{y,\text{det}}(\omega) y_2 + o(y_1, y_2) \]

\[W_y(y_1, y_2, s) = W_y^0(s) + W_{y,\text{driv}}(s) y_1 + W_{y,\text{det}}(s) y_2 + o(y_1, y_2) \]

<table>
<thead>
<tr>
<th>Driving</th>
<th>Detuning</th>
<th>Higher order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{y,\text{driv}}(s) y_1)</td>
<td>(W_{y,\text{det}}(s) y_2)</td>
<td>(o(y_1, y_2))</td>
</tr>
<tr>
<td>(Z_{y,\text{driv}}(\omega) y_1)</td>
<td>(Z_{y,\text{det}}(\omega) y_2)</td>
<td>(o(y_1, y_2))</td>
</tr>
<tr>
<td>(W_y^0(s))</td>
<td>(W_y^0(s))</td>
<td>(W_y^0(s))</td>
</tr>
</tbody>
</table>

The driving kick depends only on the source location.

The detuning kick depends only on the witness location.

Coherent effect → drives coherent instabilities

\[Z_{\text{driving}} \neq 0 \text{ even in circular pipe} \]

Incoherent effect → detunes single particles

\[Z_{\text{detuning}} = 0 \text{ in circular pipe, but } Z_{\text{detuning}} \neq 0 \text{ for flat pipe or } \beta < 1 \]
Agenda

• Impedance?
 - Some useful definitions
 - Focus on driving and detuning impedances
 - Driving/detuning impedances and beam observables

• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook
Why is it important to disentangle driving and detuning?

Beam measurement of intensity dependent tune shift

→ kick the whole beam and measure betatron tune

\[y_1 = y_2 \]

Position of all particles after the kick forced to \(y_1 \sim y_2 \)

→ driving and detuning contributions add up for tune shift

→ Confirmed by measurements of tune shifts in SPS

→ Cannot explain tune shift observations without detuning impedance

Zannini, 2015

Horizontal tune shift vs intensity

![Graph showing horizontal tune shift vs intensity](image)

Accounting for detuning
Why is it important to disentangle driving and detuning?

Simulation of instability growth rate vs negative chromaticity with HEADTAIL code

→ Very small impact of detuning impedance on this simulated coherent instability

→ Confirmed by comparing with measurements in SPS

→ Should not account for detuning impedance for growth rate
→ Need accurate evaluation of both driving and detuning separately to reproduce beam observables
The impedance family recently lost several distinguished members

- Andy Sessler (1928-2014)

- Bruno Zotter (1932-2015)

- Albert Hofmann (1933-2018)

- Yong Ho Chin (1958-2019)

→ So grateful to all those who have inspired us (and continue to do so)
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook
What is an impedance model for a machine?

- A global impedance representative of the whole machine
- Used to compute related beam dynamics effects

Depending on the need, an impedance model can be anything between:
- a single number (effective impedance)
- and an elaborated tool that is able to recompute
 - many impedance contributions as a function of frequency and related thresholds
 - with changes of machine configuration (beam energy, optics, moveable device position)

Example of effective impedance model:
Australian Synchrotron
[Dowd et al, IPAC’10]

Effective longitudinal impedance
\[Z/n = 0.6 \, \Omega \]

Effective vertical impedance
\[\text{Im}(Z_y^{\text{eff}}) = 1.2 \, \text{M}\Omega/\text{m} \]

LHC real horizontal driving impedance model (single bunch and multibunch)
[Amorim et al, 2019]

10 functions of frequency:
- \(\text{Re}(Z_{\text{long}}) \)
- \(\text{Im}(Z_{\text{long}}) \)
- \(\text{Re}(Z_{x^{\text{driv}}}) \)
- \(\text{Im}(Z_{x^{\text{driv}}}) \)
- \(\text{Re}(Z_{y^{\text{driv}}}) \)
- \(\text{Im}(Z_{y^{\text{driv}}}) \)
- \(\text{Re}(Z_{x^{\text{det}}}) \)
- \(\text{Im}(Z_{x^{\text{det}}}) \)
- \(\text{Re}(Z_{y^{\text{det}}}) \)
- \(\text{Im}(Z_{y^{\text{det}}}) \)
+ coupled terms

Change of optics ➔ Tighter collimators

\[\text{2016} [\beta^*=40 \, \text{cm}] \]
\[\text{2018} [\beta^*=30 \, \text{cm}] \]
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
 • To explain observations measured with beam
 • To push machine performance
• How to build an impedance model?
• Examples of benchmarks
• Outlook
Impedance model to explain beam observables

Examples: coherent betatron tune shifts asymmetry in SPS

\[\text{[Zannini, 2015]} \]

Bunch lengthening with intensity in NSLS-II

\[\text{[Smaluk, 2019]} \]

Instability threshold with chromaticity in APS

\[\text{[Lindberg, 2019]} \]

→ Impedance models can explain these beam observations
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
 • To explain observations measured with beam
 • To push machine performance
• How to build an impedance model?
• Examples of benchmarks
• Outlook
Impedance model to push performance

Example: LHC octupole current needed to mitigate transverse instabilities over the years

- Required octupole current very close to maximum
- Very little margin for operation!
- Frequent instabilities and beam quality degradation at that time
- Also checked impedance models by e.g. tune shifts
 - Unlikely that the unexplained difference is linked to impedance
Impedance model to push performance

Example: LHC octupole current needed to mitigate transverse instabilities over the years

→ Understood and confirmed in 2017 that large linear coupling was destabilizing the beams [Métral/Carver 2018] → corrected
→ Much more operational margin
→ What remains unexplained is believed to come from noise
Impedance model to push performance

Example: LHC octupole current needed to mitigate transverse instabilities over the years

→ HL-LHC scenarios brings octupole current very close to maximum (accounting for errors)
→ Need impedance reduction in frequency range of interest
 → Target: reduce impedance of collimators
Impedance model to push performance

Example: LHC octupole current needed to mitigate transverse instabilities over the years

With an accurate impedance model, we can

1) assess if some ingredients are missing in understanding beam stability
2) predict operational margins in case of new machine or upgrade
3) identify targets for impedance reduction
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook
How to build an impedance model (longitudinal)

1. Identify main impedance contributors
2. Assess impedance of individual elements
3. Sum the impedance contributions
4. Longitudinal impedance model
5. Compute beam observables

- Measurements of observables with bench

If not, need to reconsider all the steps

- Measurements of observables with beam

Is there agreement?
How to build an impedance model (transverse)

1. Check what outputs are needed from the model
2. Identify main impedance contributors
3. Assess impedance of individual elements
4. Sum the weighted impedance contributions
5. Transverse impedance model
6. Compute beam observables
7. Measurements of observables with bench
8. Machine optics (β functions)
9. Measurements of observables with beam

Is there agreement?
If not, need to reconsider all the steps

What will the model be used for?
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook

Check what outputs are needed from the model

Identify main impedance contributors

Assess impedance of individual elements

Sum the (weighted) impedance contributions

Impedance model

Compute beam observables
Check what outputs are needed from the impedance model

Impedance used as input of stability tools:
→ **Macroparticle simulations** (e.g. ELEGANT, PyHEADTAIL, BLonD, mbtrack, MuSic)
→ **Vlasov solvers** (e.g. BimBim, DELPHI, NHTVS, GALACTIC, GALACLIC)

- **Chosen stability tool**
- **Use-case:**
 - Single or multi-bunch
 - Single or multi-turn
- **Bunch length**
- **Required Impedance model type:**
 (Wake table, impedance table, list of resonators, analytical formulae)
- **Required Frequency range**

→ What we do with the impedance model outputs should drive the strategy for beam impedance computations
Check what outputs are needed from the impedance model

Examples of recent advances
- Inclusion of damper in Vlasov solvers [Burov, 2014]
- Account for detuning impedance in Fokker Plank solvers [Lindberg, 2016]
- Beam dynamics codes to multibunch and low beta [Mounet 2012, Lasheen 2017]

Challenges
- Need better understanding of impact of detuning impedance on beam dynamics
- Need to include all other effects in simulations (e.g. electron cloud, IBS, SR, CSR)

Common practice
- Important to define use-case before launching the full impedance simulation campaign
- Check required frequency range, beam energy and the impedance which will be used
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook

1. Check what outputs are needed from the model
2. Identify main impedance contributors
3. Assess impedance of individual elements
4. Sum the (weighted) impedance contributions
5. Impedance model
6. Compute beam observables
Identify main impedance contributors

- Too many devices to compute all impedances of the machine
 → Need to identify the **usual suspects that give large impedance contribution**
 - Beam pipe
 - Material with large losses (kickers)
 - Cavities (RF cavities, crab cavities, instrumentation),
 - Low aperture devices (collimators, insertion devices),
Identify main impedance contributors

- Too many devices to compute all impedances of the machine
 - Need to identify the usual suspects that give large impedance contribution
 - Beam pipe
 - Material with large losses (kickers)
 - Cavities (RF cavities, crab cavities, instrumentation),
 - Low aperture devices (collimators, insertion devices),
 - But also very small impedances in very large numbers

Example: step transitions in SPS

- Small individual contribution, but many steps!
- Large impact on tune shift
- Important to account for these elements to explain beam observables
Identify main impedance contributors

- There are the impedance sources we know... and the impedance sources we don’t know

→ Non conformities, damage, ageing, wrong termination can lead to large unexpected impedances

Example: LHC RF fingers

Non-conform: damaged by RF heating from beam

→ Needs very good knowledge of layout
→ Needs close follow up with equipment and integration teams
→ Look out for abnormal signs (outgassing, heating) → could be sign of degradation

[Kononenko et al, IPAC’13]
Identify main impedance contributors

- Identification of single element with bad termination driving transverse instabilities in CERN LEIR and PSB [Koukovini et al, 2018]

The real machine is not always what it should be
- Incorrect models in layout database
- Modifications not always recorded
- Non-conformities, damage, ageing

Challenges
- Start with beam pipe and known large impedance sources
- Check equipment in large numbers (flanges, BPMs, bellows) and those at large β functions
- Look out for signs of non-conformities

Common practice
Agenda

- Impedance?
- What is an impedance model?
- Why build an impedance model?
- How to build an impedance model?
- Examples of benchmarks
- Outlook

Check what outputs are needed from the model
Identify main impedance contributors
Assess impedance of individual elements
Sum the (weighted) impedance contributions
Impedance model
Compute beam observables
Assess impedance of individual elements

Many tools at our disposal!
→ Analytical tools for ideal simple geometries
→ Dedicated 3D simulations tools for everything else
 - commercial codes (CST, GdfidL)
 - university and lab-based codes (ABCI, ACE3P, ECHO3D, TBCI)

Huge improvements over past 15 years, but still many constraints and challenges

→ Bench measurements (with wire, two wires, probes and bead)
Assess impedance of individual elements

Analytical computations
- Efficient computation of impedance of multilayer beam pipes [Mounet, 2012]
- Impedance scaling for small angle transitions [Stupakov, 2011]
- Extension of analytical theories to more realistic geometries (flat, finite length, elliptic) [Mounet 2012, Biancacci 2012, Migliorati 2019]

Simulations
- Wake functions from wake potentials [Podobedov, Stupakov, 2013]
- Simulations with low beta [Niedermayer, Zannini, 2014]
- Travelling wave method for simulating low impedance [Grudiev, Arsenyev 2019]
- Disentangling driving and detuning impedance with Eigenmode solver [Arsenyev, 2019]

RF measurements
- EM properties of coatings for ~100 GHz [Koukovini-Platia, 2015]

→ Many advances! Very active field!
Assess impedance of individual elements

- Assess electromagnetic properties of materials at high frequency
- Account for external circuits
- Usual limitations of 3D simulation codes:
 - Numerical noise for very low impedance
 - Number of mesh cells
 → geometries with large aspect ratio (coatings, wires)
 → excitation with small bunch length
- Bunch excitation beyond beam-pipe cut-off → devices no longer independent
- RF measurements
 → perturbed by the probes and wires → no direct access to impedance
 → not always possible

Challenges

- Disentangle driving and detuning contributions
 → possible for wakefield, eigenmode and wire measurements
- Account for low beta
- Benchmark simulation results in-between codes
- Benchmark bench measurements with simulated bench measurements
- When possible:
 - Prefer analytical models to 3D simulations
 - Avoid deconvolution to get wake function

Common practice
Agenda

- Impedance?
- What is an impedance model?
- Why build an impedance model?
- How to build an impedance model?
- Examples of benchmarks
- Outlook

![Diagram](image-url)
Sum the weighted impedance contributions

- Prepare all available impedance contributions (FFT, iFFT, interpolation)
- Weighted with beta function at each device location (for transverse)
- Sum into impedance model

Assumption:
- Can lump all impedances into one impedance model if related beam dynamics effects are much slower than revolution time.
 - likely why the concept of impedance models is not much used in Linacs.
Sum the weighted impedance contributions

- Non-equidistant Fourier Transform [Mounet, 2012]

- not to lose information during interpolation and FFTs
- Maintaining impedance models on the long term

Recently Solved Challenges

- Design an impedance database to store:
 - input parameters and 3D models
 - computed impedance/wake data
 - beta functions for various machine configurations
 - With scripts to recompute automatically the impedance model
- Perform updates of model every year to follow up machine and configuration changes

Challenges

Common practice
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook
Examples of longitudinal impedance/wake models

APS model [Lindberg, BTCLER’19]

TPS model [Rusanov, EPAC08]

ESRF model [White, IPAC’17]

MAXIV model [Klein, IPAC13]

CERN SPS model [Lasheen, MD days 2017]

→ Many detailed longitudinal impedance models for machines around the world
Examples of transverse impedance/wake models

ALBA model [Guenzel, ESLS’10]

SIS18 model [Niedermayer, 2011]

PSB model [Zannini, 2019]

→ Many detailed transverse impedance models for machines around the world
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of benchmarks
• Outlook

Check what outputs are needed from the model
Identify main impedance contributors
Assess impedance of individual elements
Sum the weighted impedance contributions
Transverse impedance model
Compute beam observables

Measurements of observables with beam

Is there agreement?
Available beam-based measurement techniques (transverse)

<table>
<thead>
<tr>
<th>observable</th>
<th>Vs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betatron tune shift</td>
<td>Intensity, chromaticity</td>
</tr>
<tr>
<td>phase advance shift (localization)</td>
<td>Intensity, chromaticity</td>
</tr>
<tr>
<td>orbit deviation</td>
<td>Orbit bump, intensity</td>
</tr>
<tr>
<td>Growth rate</td>
<td>Intensity, chromaticity</td>
</tr>
<tr>
<td>Damping</td>
<td>Intensity, chromaticity</td>
</tr>
<tr>
<td>Grow-damp</td>
<td>Excited frequency</td>
</tr>
<tr>
<td>Bunch by bunch and multibunch tune shift</td>
<td>Intensity, number of bunches</td>
</tr>
<tr>
<td>Growth rate of coasting beam spectral lines</td>
<td>Intensity, chromaticity</td>
</tr>
</tbody>
</table>

→ Many techniques available to assess and disentangle various contributions of transverse impedance
→ Possibility to sweep the sampled frequency of the impedance with chromaticity and bunch length
<table>
<thead>
<tr>
<th>Observable</th>
<th>Vs</th>
<th>Access to Stable Beam?</th>
<th>Mode</th>
<th>Machine</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch lengthening, energy spread increase</td>
<td>intensity</td>
<td>$\text{Im}(Z_{//}/n)$</td>
<td>Effective</td>
<td>Global</td>
<td>Stable</td>
</tr>
<tr>
<td>Incoherent quadrupole frequency shift</td>
<td>Intensity</td>
<td>$\text{Im}(Z_{//}/n)$</td>
<td>Effective</td>
<td>Global</td>
<td>Stable</td>
</tr>
<tr>
<td>Incoherent dipole frequency shift</td>
<td>Intensity</td>
<td>$\text{Im}(Z_{//}/n)$</td>
<td>Effective</td>
<td>Global</td>
<td>Stable</td>
</tr>
<tr>
<td>Microwave instability threshold</td>
<td>Intensity</td>
<td>$</td>
<td>Z_{//}</td>
<td>/n$</td>
<td>Effective or Sampled</td>
</tr>
<tr>
<td>Heat load</td>
<td>intensity</td>
<td>$\text{Re}(Z_{//})$</td>
<td>Effective</td>
<td>Local</td>
<td>Stable</td>
</tr>
<tr>
<td>Loss of Landau damping (threshold, growth rates)</td>
<td>Intensity bunch length</td>
<td>$</td>
<td>Z_{//}</td>
<td>/n$</td>
<td>Effective or Sampled</td>
</tr>
<tr>
<td>Debunching bunch</td>
<td>Intensity</td>
<td>$\text{Re}(Z_{//}/n)$</td>
<td>Sampled</td>
<td>Global</td>
<td>Stable</td>
</tr>
<tr>
<td>Synchrotron phase shift</td>
<td>Intensity/device position</td>
<td>$\text{Re}(Z_{//})$</td>
<td>Effective</td>
<td>Global/local</td>
<td>Stable</td>
</tr>
</tbody>
</table>

→ No equivalent of chromaticity to sweep frequency dependence
→ Should compare bunch length and distribution dependence with macroparticle simulations
Comparing computed observables with beam based measurements

- High accuracy tune shift measurements [Antipov2018, Podobedov2018]

Examples of recent advances

- Accuracy of instrumentation
- Machine availability for measurements
- Machine protection issues (instability and kick)
- Observables can be affected by other mechanisms
- Reproducibility of machine between measurement sessions

Challenges

Common practice

- Systematic check of tune shift and bunch lengthening every year
- Assess dependence on bunch length and energy spread (for longitudinal)
- Assess dependence on chromaticity and bunch length (for transverse), and emittance (for growth rates)
- Use several measurements to test the model from different points of view
Agenda

- Impedance?
- What is an impedance model?
- Why build an impedance model?
- How to build an impedance model?
- Examples of impedance model benchmarks
 - Around the world
 - Focus on CERN SPS
- Outlook
Impedance model benchmarks for lepton machines

Quite homogeneous impedances among lepton machines

Review by V. Smaluk, 2019
Measured impedance for all machines

- Need logarithmic scales to display hadron and lepton machines!

Lepton machines $< \frac{1 \Omega}{1 M \Omega/m} <$ hadron machines (except LHC)

- Strong emphasis on minimizing LHC impedance from design stage paid off!

Possible reasons:

- Beam induced heating in leptons is a strong incentive to keep low geometric longitudinal impedance

- Strong impact of indirect space charge for low energy

- Frequency sampling larger for smaller bunch length
Error between measurement and model

Most machines are within +/- 50% missing impedance from measurement

Reasonable target in view of the error bars accumulated along the way?

Marketing convention: \[\text{error} [\%] = \frac{Z_{\text{meas}} - Z_{\text{model}}}{Z_{\text{meas}}} \]
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of impedance model benchmarks
 • Around the world
 • Focus on CERN SPS
• Outlook
Example of the CERN SPS

Vertical and horizontal tune shift versus intensity

Vertical headtail growth rates vs chromaticity

→ Model and measurements agree for several orthogonal measurements
Example of the CERN SPS

Longitudinal effective impedance vs bunch length deduced from quadrupole frequency shift

Model and measurements agree for several orthogonal measurements

[Lasheen, 2017]
Example of the CERN SPS

Instability threshold studies vs intensity and emittance

Beam measurements

Simulation

Intrabunch pattern during instability

Beam measurements

Simulation

→ Model and measurements agree for several orthogonal measurements

Bartosik, IPAC’14
Example of the CERN SPS

Checking parameter dependence effective impedance
- gives much more confidence in the model
- shows that effective impedance is not a single number

It took many years, many measurements, many models and many people to get there!

SPS is an ideal testbed → many possibilities to perform parallel and dedicated measurements
Agenda

• Impedance?
• What is an impedance model?
• Why build an impedance model?
• How to build an impedance model?
• Examples of impedance model benchmarks
• Outlook
Outlook: machine impedance models

• Precious tool to explain observations, stability thresholds and push the performance of a machine

• Widespread in the accelerator community
 ➔ different levels of complexity depending on need and allocated resources
 ➔ Building impedance models for CERN machines and benchmarking them with measurements required a critical mass of people, expertise and skills over many years in:
 - Computation of impedance (theory, simulations and measurements)
 - Beam dynamics (theory, simulations and measurements)
 - Database and scripting
 - Machine measurements (operation, instrumentation, RF, optics)

• There are heavy challenges at all levels of the making of the model, but also converging good practices and beautiful benchmarks of models with measurements

• Impedance alone cannot explain all stability observations
 ➔ Need to include e.g. linear coupling, electron or ion cloud, space charge, IBS, beam-beam for colliders, synchrotron radiation (incoherent and coherent), damper, noise
 ➔ Important to have an accurate impedance model to avoid propagating errors to other connex studies
These topics will be discussed in the upcoming Zermatt workshop.

As well as at the

ALERT 2019 workshop

Advanced Low Emittance Rings Technology

July 10 – 12, 2019 | Ioannina, Greece

Dedicated to small apertures
Thank you for your attention!

.. and congratulations to Vittorio, one of the fathers of the impedance concept!

Accelerator Awards

The 2019 Asian Committee for Future Accelerators (ACFA)/IPAC19 are honouring...

The Xie Jialin Prize for outstanding work in the accelerator field, with no age limit.

Prof. Vittorio Giorgio Vaccaro

“For his pioneering studies on instabilities in particle beam physics, the introduction of the impedance concept in storage rings and, in the course of his academic career, for disseminating knowledge in accelerator physics throughout many generations of young scientists.”
References

• B. Zotter and A. Kheifets, Impedances and wakes in high-energy particle accelerators, 1998
• L. Palumbo, V. Vaccaro, M. Zobov, Wake Fields and Impedance, 2003
• [Zannini, 2015]: Benchmarking the CERN-SPS Transverse Impedance Model with Measured Headtail Growth Rates – Zannini et al. IPAC-2015
• [Dowd, IPAC’10]: Impedance Effects in the Australian Synchrotron Storage Ring, IPAC 2010
• [Amorim et al, 2019]: HL-LHC impedance and related effects, CERN report 2018
• [Smaluk, 2019]: these proceedings
• [Lindberg, 2019]: Experimental verification of impedance modeling for next-generation light sources, BTCLER workshop, Karlsruhe 2019
• [Kononenko. IPAC13]: impedance Studies for VMTSA Module of LHC Equipped with RF Fingers, IPAC2013.
• [Vollinger 2018]:
• [Rusanov, EPAC’08]: Impedance Study for the TPS Storage Ring, EPAC’08.
• [White, IPAC’17]: Preliminary Longitudinal Impedance Model for the ESRF-EBS, IPAC’17.
• [Klein, IPAC’13]: Study of Collective Beam Instabilities for the MAX IV 3 GeV Ring, IPAC’13.
• [Guenzel, ESLS’10]: Final Impedance Budget of the ALBA Storage Ring, Trieste 2010.
References

- [Bartosik, 2014]: TMCI Thresholds for LHC Single Bunches in the CERN-SPS and Comparison with Simulations
- [Biancacci, 2012]
- [Migliorati 2019]
- [Podobedov, Stupakov, 2013]: Point-charge wakefield calculations from finite length bunch wake potentials, PRAB 2013.
- [Niedermayer, 2014]: Beam Coupling Impedance Simulation in the Frequency Domain for the SIS100 Synchrotron, IPAC 2014.
- [Podobedov 2018]: Beam Dynamics Measurements with New Generation BPMs, BES Light Sources Beam Stability Workshop, ALS, LBNL, 2018
- [Carver 2018]: Transverse beam instabilities in the presence of linear coupling in the Large Hadron Collider, PRAB 2018.