

Operational Results of LHC Collimator Alignment using Machine Learning

Gabriella Azzopardi^{1,2}

with contributions from: B. Salvachua², G. Valentino¹, S. Redaelli², A. Muscat¹

¹University of Malta, Msida, Malta,

²CERN, Geneva, Switzerland

gabriella.azzopardi@cern.ch

Introduction

Large Hadron Collider

- 27 km with 1232 superconducting dipole magnets
- Accelerates and collides two counterrotating beams at 6.5 TeV
- During Run II beam stored energies
 higher than 300 MJ
- The magnets and other sensitive equipment protected from quenching and any damage => Collimators

The Collimation System

- 100 collimators aligned
- Precision of less than 50 µm
- Concentrate beam losses in warm locations
- At tight gaps of 1.05 3 mm
- Provide 99.998% cleaning efficiency (protons)

LHC Machine Cycle

To prepare the machine cycle the collimators must be aligned at all machine states:

- Injection: 75 collimators + 4 injection protection collimators
- Flattop: 75 collimators
- Squeeze: 16 tertiary collimators
- Collisions: 16 tertiary collimators + 12 physics debris collimators

Beam Instrumentation

- Beam Loss Monitors (BLMs) used to align collimators
- Record beam losses generated by collimators as they touch the beam
- Beam-based alignment (BBA)

Beam-Based Alignment

- Semi-Automatic Alignment
- Fully-Automatic using Machine Learning

Beam-Based Alignment

Four-stage alignment procedure:

The reference collimator forms a reference cut in the beam halo.

Beam centre calculated from final collimator position.

Beam size calculated using reference collimator before and after.

Alignment Tasks

Since 2011: Semi-Automatic Alignment

BBA alignment of 40+ collimators require 4/5 collimation experts.

Alignment Tasks

Since 2018: Fully-Automatic Alignment

Machine Learning

- Data set of 8706 samples from alignment campaigns in 2016 and 2018
- Six machine learning models for spike classification were compared Logistic Regression, Neural Network, SVM, Decision Tree, Random Forest, Gradient Boost
- The models were pre-trained on 100 Hz data and are used in real-time for collimator alignments (in 2018 used majority vote)

Machine Learning Features

- Data sample taken when collimator stops moving
 - ---> 100 Hz BLM data
 - → 1 Hz Jaw Position (mm)

- 5 features extracted:
 - ---> Spike Height
 - ---> Exponential Decay
 - \rightarrow Jaw Position in σ

(x1 feature)

G. Azzopardi, et al., Automatic Spike Detection in Beam Loss Signals for LHC Collimator Alignment, NIM-A, 2019 12

Alignment Evolution

- 8 Years of Collimator Alignments
- Fully-Automatic Alignment
 - ---- 2 Versions

Alignment Evolution

Collimators are aligned before each year of operation during commissioning at all machine states

Fully-Automatic Alignment

- The 1st version was used during commissioning 2018
 - ---> **Sequential** alignment of the collimators in the two beams
 - ----> Used at both Injection and Flat top commissioning
 - ---> The beam centres and beam sizes consistent with 2017 commissioning
 - → The settings were used during LHC operation in 2018
- The 2nd version was used later in 2018 at **Injection**
 - ---> Parallel alignment of collimators restored using crosstalk analysis
 - ---> The beam centres and beam sizes were compared to 2018 commissioning

Fully-Automatic Alignment Results

Collimators

Fully-Automatic Alignment Results

Conclusions

• Collimators are aligned each year using a beam-based alignment

---- 100 collimators with a precision of less than 50 µm

- In 2018 the beam-based alignment was **Successfully Fully-Automated**
- Demonstrated full automation does not need presence of (many) experts with the use of Machine Learning
- Successful Parallel Alignment of both beams by analysing crosstalk
 between collimators
- The full-automation will be used as the **default alignment software** for the **start-up of the LHC in 2021**
- This software with Machine Learning has also been used to align collimators with 4 degrees of freedom (Angular Alignment)

G. Azzopardi, et al., Automatic Angular Alignment of LHC Collimators, ICALEPCS'17

Thank you for your attention!

Questions?

Backup Slides

The Collimation Hierarchy

Fully-Automatic Alignment Implementation

Crosstalk Analysis for Parallel Selection

- Data set of 650 samples
- RMS smoothed BLM signals of all collimators >5E-6 Gy/s analysed
- Preliminary analysis -> Crosstalk if mean loss >5% of aligned collimator

Automatic Threshold Selection

- Data set of 1778 samples
- EWMA used to assign priority to the data and RMS to extract information
- >90% of auto selected thresholds show insignificant difference from users

Fully-Automatic Alignment Implementation

(FESA - Real-time control framework to develop LHC ring front-end equipment software)

Sequential Alignment Results

Fully-automatic software v1.0 @Injection (06/04/2018)

Collimators

Version 1: Sequential Alignment

Fully-automatic software v1.0 @Injection (06/04/2018)

Version 1: Sequential Alignment

Fully-automatic software v1.0 @Flat top (08/04/2018)

Version 2: Parallel Alignment

Fully-automatic software v2.0 @Injection (13/09/2018)

Angular Alignment Implementation

- Collimators have always been aligned assuming no tilt angle w.r.t the beam
 - ---> Angular alignment is key to tighten hierarchy
- Three novel angular alignments to find best angle:
 - 1. Using a reference collimator Offset in tank
 - 2. At maximum angles Quick centre calculation
 - 3. Using a jaw as reference Asymmetries in collimator
- The algorithms were implemented using the fullyautomatic alignment

G. Azzopardi, et al., Automatic Angular Alignment of LHC Collimators, ICALEPCS'17

Angular Alignment Results

1 collimator at 41 angles using 3 methods @Injection: 28 minutes

Ion Beams Alignment

Fully-automatic software v1.0 @Collisions (06/11/2018)

- Aligned IR7 collimators with Ion beams in collisions
- Compared results to proton beam commissioning at flat top from 2018
- Consistent results for majority of collimators

 \longrightarrow Some indicate a difference between ±150 µrad and ±200 µrad

