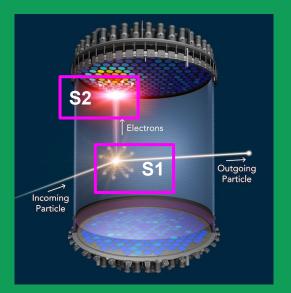


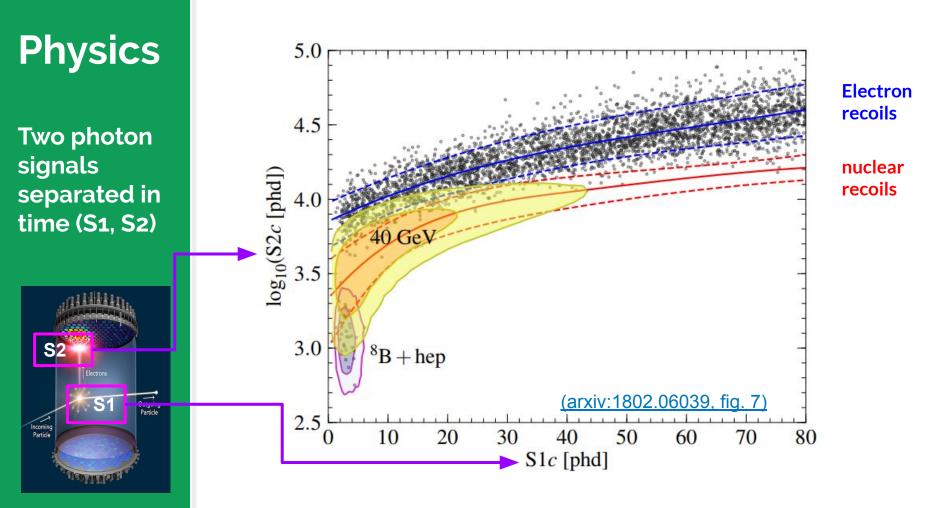
LZ overview and needs for future Luke Kreczko 28th October 2019



Outline

- The Lux-Zeplin (LZ) experiment
- Current computing overview
- Future needs

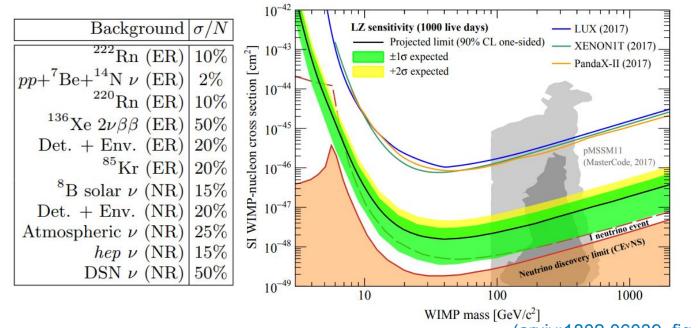
Lux-Zeplin



Two-phase Xenon TPC experiment for direct Dark Matter (DM) detection (<u>technical design report</u>)

- ~500 PMTs
- 7 tonnes (5.6t fiducial) volume
- Typically looking for two signals (S1 & S2)

Located at <u>Sanford Underground Research Facility</u> (SURF) in Lead, SD


- 4850 feet (0.9 miles, 1.48 km)
- At the final stages of assembly, main vessel going underground soon (check <u>@lzdarkmatter</u> for latest news)

Physics

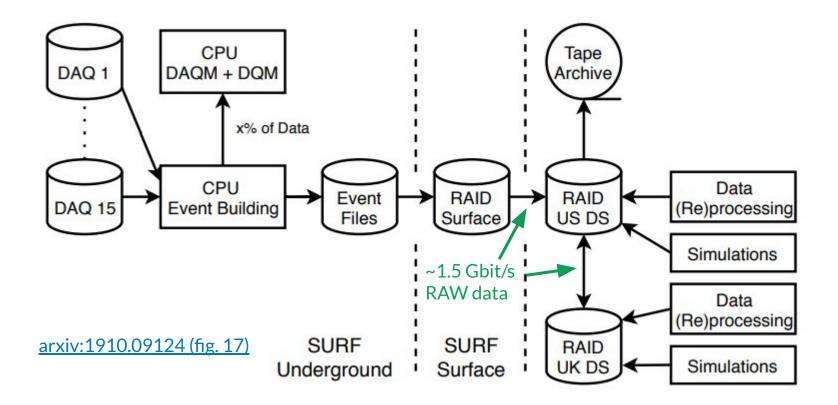
Discover Dark Matter

Measure solar neutrinos

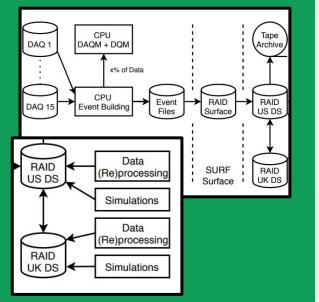
(arxiv:1802.06039, fig. 8)

LZ Computing

LZ Computing


Two main computing and storage locations:

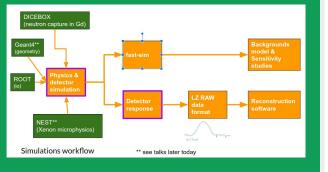
- USDC (<u>NERSC</u>) & UKDC (Imperial College London)
- Using <u>SPADE</u> for data transfers USDC \leftrightarrow UKDC


Software on CVMFS (hosted by U. Wisconsin)

- Using bits of /cvfms/sft.cern.ch
- Building own packages on /cvmfs/lz.opensciencegrid.org

Using **GitLab** (U. Alabama) & **Continuous Integration** (U. Bristol) for building, testing, documentation & validation

Data acquisition and processing



LZ data acquisition & processing based on <u>Gaudi</u> <u>Framework</u>

- Particle and event reconstruction
- Calibration & applying corrections from conditions database
- Parallel data streams in input \rightarrow used for Salting
- Offline DQM with Gaudi Histogram Services
- Reduced Quantities with Gaudi ConversionSvc

Simulations

(more details tomorrow)

Describe low-energy liquid Xenon interactions with

- Electrons \rightarrow electron recoils (ERs)
- Nuclei \rightarrow nuclear recoils (NRs)
- WIMPs \rightarrow similar to NRs

Photon (175 nm) & low-energy electron propagation

- Drifting low-energy electrons in electric field
- Millions of photon through a transparent medium

Accurate PhotoMultiplier Tube (PMT) response

• Photon pulses as close to real data as possible

Mock Data Challenges

Testing computing infrastructure with MDCs

- Both data centres tested
 - independently & compared
- 6 months of simulated data
- Treated as real data for processing & analysis
- Resource use monitored & compared against estimates
- First experiences for analysts with LZ data

Data analysis

Data analysis requirements:

• Easy to set up, reproducible, quick iterations

C++ packages based on ROOT, RooFit and RooStats for data analysis & statistical evaluation

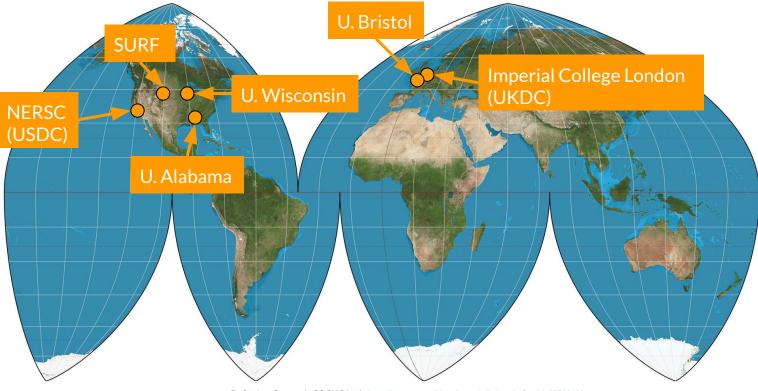
Processing fast-sim, full-sim & data (reduced quantities)

Looking into Python analysis with **FAST-HEP**

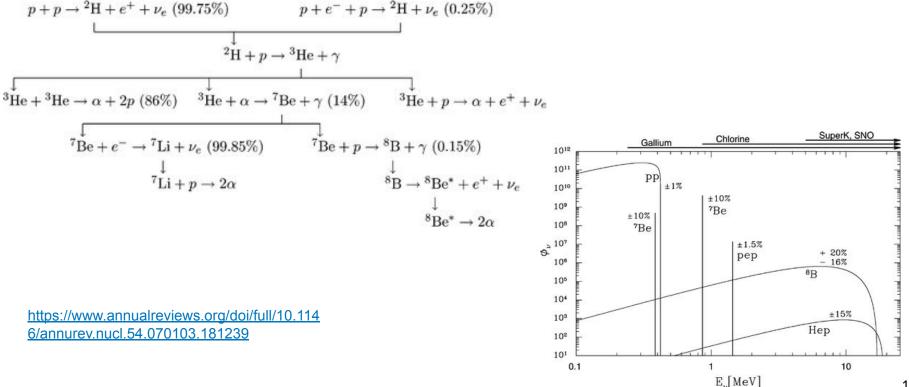
Machine learning: See Scott's talk this afternoon

Future needs / whishlist Saving personpower for "standard tasks"

- specialize code for specific architectures & many cores
 - HPC: <u>Perlmutter cluster at NERSC in 2020</u>
 - GPUs? FPGAs?
- sharing high-level tools
 - Rucio seems a good example in other experiments
 - What else can we share in the future?
 - What can we do to strengthen collaboration?
- Related: curated list of "standard"
 - Complete with "this worked, this failed because of XYZ"
 - Computing "How-to for new experiments"


Summary

Thank You

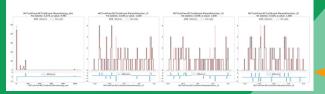

Backup slides

LZ Computing Infrastructure

By Strebe - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35708409

Solar neutrinos ⁸B & *hep*

18


Continuous Integration

Validation powered by SCIKIT-Validate

Detailed validation report for validation:centos7

Overview

Distributions in disagreement with reference

BACCARAT CI Report

Pipeline summary

Current pipeline: https://lz-git.ua.edu/sim/BACCARAT/pipelines/9292

name	status	log	software versions	
quick-checks:centos7		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
build:centos7		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
unit-tests		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
build:docs		log (raw)	python=3.6.5, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
build:debug		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
test:centos7		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
validation:centos7		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	
build:profile		log (raw)	python=2.7.15, gcc=7.3.0, geant4=10.3.2, root=6.16/00	

Validation report

job	status	summary	details	mismatch
validation:centos7	failed	4/3773 distributions differ (10 unknown)	details	 Display the names of the 4 differing distributions