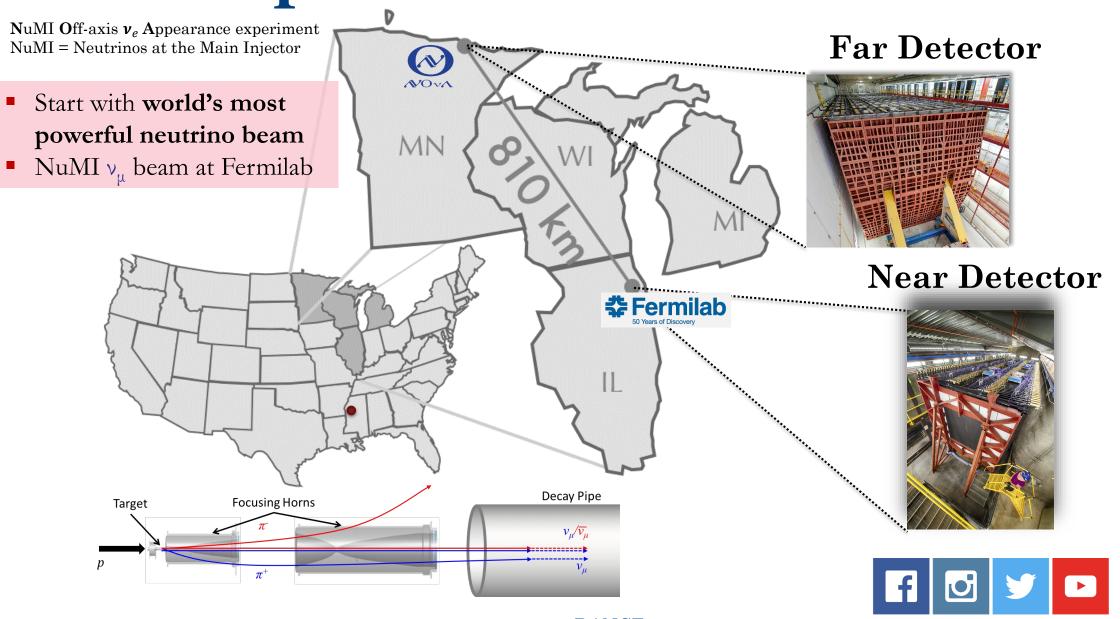


NOvA Software Infrastructure

Gavin S. Davies

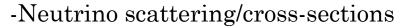

October 28, 2019

NOvA experiment

NOvA Physics

a long-baseline neutrino oscillation experiment

v_u CC Disappearance

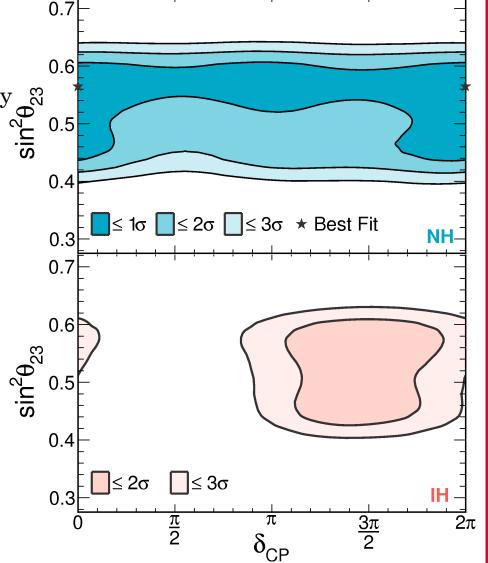

- ${}^{\blacksquare} \; \nu_{\mu} \rightarrow \nu_{\mu} \;\; \& \;\; \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$
- Precision measurements of: $\sin^2(\theta_{23}) \& |\Delta m_{32}^2|$

v_e CC Appearance

- $v_{\mu} \rightarrow v_{e}$ & $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$
- Neutrino mass hierarchy ≅
- CP violating phase $\theta_{13} \& \theta_{23} \& \delta_{CP}$

First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA

Phys. Rev. Lett. 123, 151803 (Oct. 2019)


(new:arXiv:1902.00558)

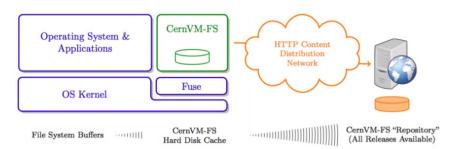
- -Sterile v searches
- -Seasonal cosmic ray studies

(new: arXiv:1904.12975)

- -Supernova v's
- -Exotic searches:

magnetic monopoles, GW multi-messenger. $n-\bar{n}$ oscillations, ...

NOvA Computing I


- Virtual Machines
 - 15 VMs for interactive use on BlueArc (NFS-based Network Attached Storage [NAS])
 - Several hundred TB of BlueArc "short-term" storage
 - Originally everything via BlueArc not scalable

CVMFS

- NOvASoft maintained/published on OSG server (/cvmfs/nova.opensciencegrid.org)
- Scratch and Persistent areas
- File streaming via **xrootd**
- Tape/Data Storage
 - Long-term storage
 - Cache management: Frontend ~4 PB **dCache** shared across IF experiments
 - SAM (Sequential data Access Metadata) data cataloguing system
 - FTS (File Transfer Service) daemon interfaces w/ SAM and automates file transfers

• Databases:

• Several (PostgreSQL), required for online and offline operations – Accessed via http for offsite usage **DANCE 2019**

NOvA Computing II

INIVERSITY MISSISSIPPI

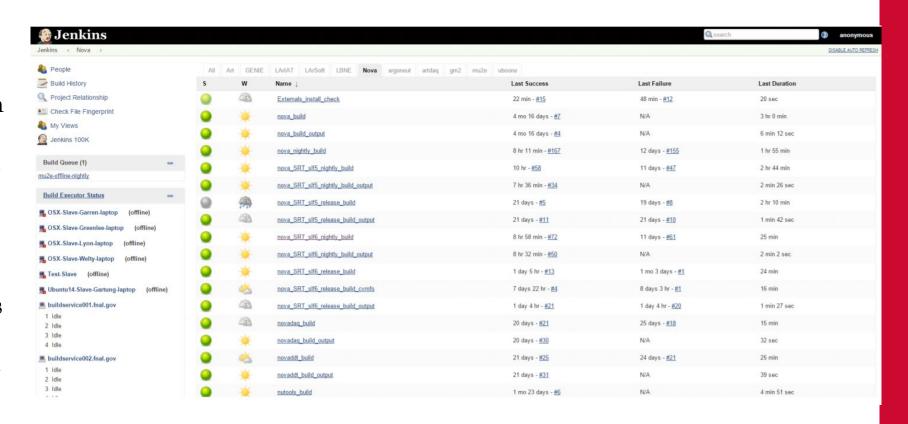
NOvASoft

- built using Fermilab's custom version of Software Release Tools (SRT)
- a UNIX based software management system
- Allows for asynchronous development
- Concept of a "test release" single/multi package dev. versus base
 - Simple, fast build times
- SVN (offline), CVS (online) repositories git for ML tools [see F. Psihas talk Tuesday]
- Alternatively, Multi Repository Build (MRB) system using Cmake

art

- event-processing framework [J.Phys.Conf.Ser. 396 (2012) 022020]
 - developed and maintained by Fermilab software engineers
 - Provides a robust, professionally maintained foundation

UPS/UPD


- access to external products is provided by a Fermilab-developed product-management package called Unix Product Support
- UPD (UNIX Product Distribution) provides the functionality for uploading/downloading products between local systems and product distribution servers
- Support waning Fermilab developing **Spack**-based package management tool

NOvA Computing III

Jenkins

- open source automation server – supports building, deploying and automating projects
- Nightly builds
 - "Early warning" system for commits
- Continuous Integration

NOvA Simulation

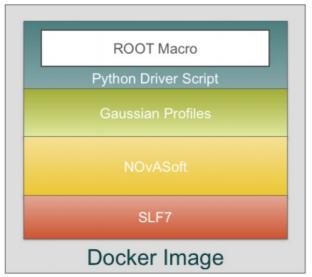
Step	CHEP-2015	CHEP-2018	Products
Beam simulation	FLUKA / FLUGG	GEANT / External Data (MINERvA)	Simulates the incoming neutrino spices and spectrum from π , K , μ decays
Neutrino interactions	GENIE	GENIE + Cross- section tuning	Produces particle lists and kinematics to be propogated through the detector
Cosmic rays	CRY	Data triggers + Overlay	
Detector simulation	GEANT 4	GEANT 4 upgrade (neutron simulation) + revision in geometry	Propagates particles through the detector and produces energy deposits in active materials
Readout electronics and DAQ	Custom simulation routines	Updates of the light model and electronics setup	Converts energy deposits into scintillation light, its transport to APD and simulates the readout response, produces output like raw data

NOvA Computing IV

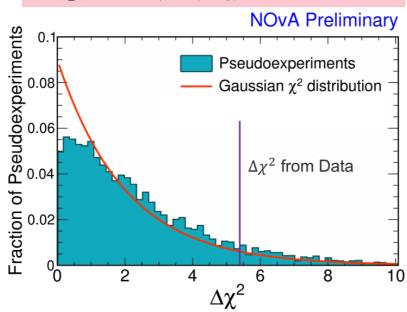
Batch

- Access via OSG to multiple clients and specific NOvA-dedicated offsite clients
 - includes Harvard University, Southern Methodist University, Institute of Physics of the Academy of Sciences (Prague, Czech Republic), and Ohio Supercomputing
- Local batch cluster: ~40 nodes
 - Grid slots at Fermilab for NOvA: 1300 node quota
 - opportunistic slots also available
 - Remote batch queues: thousands of additional slots

NOVA HPC


NERSC

- In collaboration with DOE SciDAC-4 and the HEPCloud program
 - Scientific Discovery through Advanced Computing
- Feldman-Cousins corrections in timely fashion
- Implemented with **Docker** image
- Estimated 50x speedup as compared to Fermigrid



D. Doyle, CSU

Requires $\mathcal{O}(10^7) \Delta \chi^2$ calculations!

https://news.fnal.gov/2018/07/fermilab-computing-experts-bolster-nova-evidence-1-million-cores-consumed/

Needs/Challenges

Scalability

- Knowledge transfer (and retention)
 - Includes training future considering proliferation of tools
 - Community sharing

Thank you for the invitation!

http://novaexperiment.fnal.gov