{) ANACONDA

Accelerated Computing in
Python (with Numba)

Stan Seibert
2019-10-29

The Goal

Easy to write Runs fast

How do we maximize this

Runs intersection?

everywhere

,_) ANACONDA. © 2019 Anaconda

Big Picture: Why Is Python Great?

* (Mostly) straightforward language
» Easy for users to learn
» Easy for domain experts to become library authors

* Enormous community of software libraries for scientific computing, "data
science", as well as sysadmin, web development, and basically everything else

» Python interpreter is designed to interface to compiled libraries:

* Drive around your favorite C/C++/FORTRAN libraries from the comfort of
an interpreter

» Extremely dynamic nature of the language makes almost everything possible

,_) ANACONDA. © 2019 Anaconda

Big Picture: Why Is Python Terrible?

« Extremely dynamic nature of the language makes it easy to write
impossible to optimize code

* But, you don't have to use it that way
* Interpreter is optimized for simplicity and single-threaded execution
* You can avoid the GIL in compiled extensions
« Compiling all of the Python language is hard
* Do we actually need to compile all of it?
* Built-in data structures are bad for HPC
 Fortunately, we have several good extensions already

,_) ANACONDA. © 2019 Anaconda

Getting More Performance

A

Scale Up
(Bigger Nodes)

>
Scale Out - 4 - ol - o o
ek 1 - 8- B8

J ANACONDA. © 2019 Anaconda

Getting More Performance

A
|1
O u
53| s o fﬁ
o<l 5 0 DASK
g 5| E ot
O o o o(“v
o (&) 60
m Ve
= 0\9“‘
(not quite orthogonal approaches)
Scale Out)

(More Nodes)

-gEe

#-#

3 ANACONDA. © 2019 Anaconda

The Python Compiler Quadrant

£

= PyPy Numba
= Pyston Theano
0 Pyjion

=)

3

Q

£

- ShedSkin

5 Nuitka Cython
o Pythran
£

< Whole Program Functions

-) ANACONDA. © 2019 Anaconda

A Compromise Compilation Strategy

Tracing JIT compilation of Python
(PyPy)

JIT + type inference on functions

Static translation of Python with
type annotations to C
(Cython)

,_) ANACONDA. © 2019 Anaconda

What is Numba?

 Numba is an:
opt-in
type-specializing
just-in-time
function compiler

for numerical Python

{0 ANACONDA.

@jit (nopython=True)
def nan compact(x):
out = np.empty like(x)
out_index = 0
for element in x:
if not np.isnan(element):
out[out index] = element
out_index += 1
return out[:out_index]

~100x faster than original Python

© 2019 Anaconda

How Numba Works

Standard
Regular LLVM
Functions (for CPU)

@jit

Array

Functions Code Code
@vectorize Analysis | = Generation > NVIDIA.
(NVVM)
GPU \
@cuda.jit AMD“"
(LLVM)

,_) ANACONDA. © 2019 Anaconda

A Family of Python Compilers

@cuda.jit’ \@J't

@rocm.jit

1 @vectorize/
@guvectorize

@cfunc\ Aencil

,_) ANACONDA. © 2019 Anaconda

A Family of Python Compilers

CUDA GPU kernels CPU functions called from Python

NumPy ufuncs
(array functions)

ROCm GPU kernels

CPU functions called from C CPU stencil/window functions

i) ANACONDA. © 2019 Anaconda

Ways to Use Numba

Complexity

Custom numerical Custom data types Custom compiler New hardware
algorithms pipeline targets

J ANACONDA © 2019 Anaconda

When is Numba unlikely to help?

* Whole program compilation

* Critical functions have already been converted to C or
optimized Cython

* Need to interface directly to C++
* Need to generate C/C++ for separate compilation
* Algorithms are not primarily numerical
* Exception: Numba can do pretty well at bit manipulation

ED ANACONDA. © 2019 Anacon da

@numba.njit(fastmath=True)

Custom Algorithms: = e .
U M P - """Standard euclidean distance.
..math::
. . . . D(x, y) = \sqrt{\sum_i (x_i - y_i)~2}
+ Uniform Manifold Approximation

and Projection result = 0.0

. Dimension reduction for i in range(x.shapel@]):
result += (x[i] - y[i]) = 2

MNIST Digits Embedded via UMAP return np.sqrt(result)

8
W ! @numba.njit()

def standardised_euclidean(x, y, sigma=_mock_ones):
"""Euclidean distance standardised against a vector of standard
deviations per coordinate.

i “ﬁ,ﬁé@ ’ ..math::
W D(x, y) = \sgrt{\sum_i \frac{(x_i - y_i)#k2}v_i}}

result = 0.0

Reterence: Mcinnes, L, Healy, J, UMAP: Uniform for i in range(x.shape[0]):
Manifold Approximation and Projection for result += ((x[i] — v[i]) %% 2) / sigma[il
Dimension Reduction, ArXiv e-prints 1802.03426, esult 4= {ixiil -yl1 sigmall
2018

https://github.com/lmcinnes/umap return np.sqrt(result)

ANACONDA. © 2019 Anaconda

https://github.com/lmcinnes/umap

Benefits of using Numba for Custom Algos

* Your library can be pure Python
« Approach FORTRAN speeds with key functions
* No need to create arch-dependent binary packages

* Reduce code-bloat by not having to pre-compile all
possible type specializations (int16, int32, inte4, float32,
float64, etc)

« Take advantage of newer SIMD (like AVX-512) when
available without sacrificing backward compatibility

ANACONDA. © 2019 Anacon da

Another Benefit: Write it like FORTRAN

* Numba frees you from some of the constraints of Python,
so make sure you take advantage of them:

 Calling small functions is cheap / free (thanks to inlining)
» Break up big chunky functions
« Manual loops perform just as well as array functions.

» Use them when you want to avoid making temporary
arrays and to improve readability

g_) ANACONDA. © 2019 Anaconda - Confidential & Proprietary

Custom Data Types:
OAMa import numba
p import oamap.compiler # crucial! loads OAMap extensions!

@numba.njit
def period_ratio(stars):

from DIANA-HEP out =] Transformed to access to data
for star in stars: in ROOT, Parquet, etc..
best ratio = None
1 H 1 for one in star.planets:
Object Array Mapping in Python T o i e Lanets:
if (one.orbital_period is not None and one.orbital_period.val is
Perform high-speed calculations on two.orbital_period is not None and two.orbital_period.val is
. . ratio = one.orbital_period.val / two.orbital_period.val
columnar data without Creatmg if best_ratio is None or ratio > best_ratio:
intermediate objects. pest_ratio = ratio
T Des T Tati0 IS NOC NONE ang Dest ratio = 200:
out.append(star)
Access to LHC data (ROOT data) return out
The benefit of compiling is lost on a small dataset like this (compilation tim
Reference: Pivarski, Jim, et al. "Fast access to # but I'm sure you can find a much bigger one. @)
columnar, hierarchically nested data via >>> extremes = period_ratio(stars)
code transformation.” Big Data (Big Data), # Now that we've filtered with compiled code, we can examine the outliers in Pyt
2017 IEEE International Conference on. >>> extremes
IEEE, 2017. [<Record at index 284>, <Record at index 466>, <Record at index 469>, <Record at
https://github.com/diana-hep/oamap <Record at index 484>, <Record at index 502>, <Record at index 510>, <Record at

,_) ANACONDA. © 2019 Anaconda

https://github.com/diana-hep/oamap

Benefits of using Numba for Custom Types

* Expand to more specialized use cases than arrays
» Custom types can create a "mini DSL" in Python

« Mapping from Python syntax (attribute access, slicing,
function calls, etc) to implementation is entirely

overridable

« Numba implementation of type will be entirely
independent of Python implementation of type

ED ANACONDA. © 2019 Anacon da

Hardware Support

* Numba is continuously tested on:
» x86 / x86_64
 ARMv7 (Raspberry Pi)
 ARMvS8 (64-bit, everything else)
« PPC64LE (POWERS8 and POWER9)
* NVIDIA GPUs (CUDA)
« AMD GPUs (ROCm, not working currently)

» Adding accelerator hardware support to Numba is easier than other compilers
because of our restricted compilation model

,_) ANACONDA. © 2019 Anaconda - Confidential & Proprietary

GPU example
‘@cuda.jit

def simulate(rng, n, prob, max win, max lose, out):
tid = cuda.grid(1) ‘
step = cuda.gridsize(1l)

for i in range(tid, n, step):

win = 0
lose = 0
while win < max win \ /
and lose < max lose:
if xoroshirol28p uniform float32(rng, tid) < prob:
win += 1
else:

\ lose += 1
cuda.atomic.add(out, 0, win)

(7x faster than Numba-compiled parallel code for CPU)

{0 ANACONDA.

CUDA interop

 Numba has been pushing for other projects in the CUDA
space to be able to share device arrays

« Can pass CuPy or PyTorch arrays to Numba-compiled
GPU functions

* If you like NumPy, look at CuPy, and if you need a GPU
algorithm not in CuPy, look at Numba.

,_) ANACONDA. © 2019 Anaconda - Confidential & Proprietary

Using Numba in a Project

» Options for introducing Numba into a code base:
1. Replace code with a Numba implementation
* Numba is now a required dependency
2. Compile functions only when Numba is present
* Numba is optional dependency

« Sometimes hard to write one function that maximizes performance both
with and without Numba

3. Pick between different implementations of same function at runtime
* Numba is optional dependency
 Can tailor each implementation to maximize performance

» Also good strateqy for exploring distributed or GPU-accelerated
computing

,_) ANACONDA. © 2019 Anaconda

Packaging Notes

« Packaging with Numba as a dependency:
« Add it to your requirements.txt / conda recipe

* Wheels for (Python 2.7, 3.5-3.7) * (win-32, win-64, osx, linux-32, linux-64)
available

» Conda packages for same combinations (some repos don't post Python 3.5
packages anymore)

 Numba does not require that end users have a compiler or LLVM present on
their system if installed from binary packages.

« |f all of your machine code comes via Numba, you can ship your package as
generic for all platforms ("noarch" in conda, sdist for PyPl).

,_) ANACONDA. © 2019 Anaconda - Confidential & Proprietary

Conclusion

» Python is for driving around compiled functions

« Sometimes you want to create compiled functions with Python
itself

« Cython does ahead-of-time translation via C
* Numba does just-in-time translation directly to machine code

* No silver bullet, so think about what your needs are, and who
your user/developer audience is.

,_) ANACONDA. © 2019 Anaconda - Confidential & Proprietary

Resources

« Documentation:
http://numba.pydata.org/numba-doc/latest/index.html
» Mailing list:
http://numba.pydata.org/

* Github:
https://github.com/numba/numba

e Gitter:
https://qitter.im/numba/numba

 Feel free to ask general questions on mailing list or Gitter, and open Github
issues on specific problems.

J ANACONDA. © 2019 Anaconda - Confidential & Proprietary

http://numba.pydata.org/numba-doc/latest/index.html
http://numba.pydata.org/
https://github.com/numba/numba
https://gitter.im/numba/numba

Thanks!

J ANACONDA. © 2019 Anaconda - Confidential & Proprietary

