
© 2019 Anaconda

Accelerated Computing in 
Python (with Numba)

Stan Seibert 

2019-10-29

!1



The Goal

!2© 2019 Anaconda

Runs 
everywhere

Runs fastEasy to write

How do we maximize this 
intersection?



Big Picture: Why Is Python Great?

• (Mostly) straightforward language 
• Easy for users to learn 
• Easy for domain experts to become library authors 

• Enormous community of software libraries for scientific computing, "data 
science", as well as sysadmin, web development, and basically everything else 

• Python interpreter is designed to interface to compiled libraries: 
• Drive around your favorite C/C++/FORTRAN libraries from the comfort of 

an interpreter 
• Extremely dynamic nature of the language makes almost everything possible

!3© 2019 Anaconda



Big Picture: Why Is Python Terrible?

• Extremely dynamic nature of the language makes it easy to write 
impossible to optimize code 

• But, you don't have to use it that way 
• Interpreter is optimized for simplicity and single-threaded execution 

• You can avoid the GIL in compiled extensions 
• Compiling all of the Python language is hard 

• Do we actually need to compile all of it? 
• Built-in data structures are bad for HPC 

• Fortunately, we have several good extensions already

!4© 2019 Anaconda



Getting More Performance

!5© 2019 Anaconda

S
ca

le
 U

p 
(B

ig
ge

r N
od

es
)

Scale Out 
(More Nodes)



Getting More Performance

!6© 2019 Anaconda

S
ca

le
 U

p 
(B

ig
ge

r N
od

es
)

Scale Out 
(More Nodes)

Distributed computing
C
om

pi
le
rs

(not quite orthogonal approaches)



The Python Compiler Quadrant

!7© 2019 Anaconda

A
he

ad
 o

f T
im

e
Ju

st
 in

 T
im

e

Whole Program Functions

Numba 
Theano

PyPy 
Pyston 
Pyjion

Cython 
Pythran

ShedSkin 
Nuitka



A Compromise Compilation Strategy

!8© 2019 Anaconda

Tracing JIT compilation of Python 
(PyPy)

Static translation of Python with 
type annotations to C 

(Cython)

JIT + type inference on functions



What is Numba?

• Numba is an: 
opt-in 
type-specializing 
just-in-time  
function compiler  
for numerical Python

!9© 2019 Anaconda

~100x faster than original Python



!10© 2019 Anaconda

Regular 
Functions 

@jit

Array 
Functions 

@vectorize

GPU 
@cuda.jit

Code 
Analysis

Standard 
LLVM 

(for CPU)

(LLVM)

(NVVM)

Code 
Generation

How Numba Works



A Family of Python Compilers

!11© 2019 Anaconda

@jit

@vectorize/ 
@guvectorize

@stencil

@cuda.jit

@rocm.jit

@cfunc



A Family of Python Compilers

!12© 2019 Anaconda

CPU functions called from Python

NumPy ufuncs  
(array functions)

CPU stencil/window functions

CUDA GPU kernels

ROCm GPU kernels

CPU functions called from C



Ways to Use Numba

!13© 2019 Anaconda

Complexity

Custom numerical 
algorithms

Custom data types Custom compiler 
pipeline

New hardware 
targets



When is Numba unlikely to help?

• Whole program compilation 
• Critical functions have already been converted to C or 

optimized Cython 
• Need to interface directly to C++ 
• Need to generate C/C++ for separate compilation 
• Algorithms are not primarily numerical 

• Exception: Numba can do pretty well at bit manipulation

!14© 2019 Anaconda



Custom Algorithms:  
UMAP

!15© 2019 Anaconda

Reference: McInnes, L, Healy, J, UMAP: Uniform 
Manifold Approximation and Projection for 
Dimension Reduction, ArXiv e-prints 1802.03426, 
2018 

https://github.com/lmcinnes/umap

• Uniform Manifold Approximation 
and Projection

• Dimension reduction

https://github.com/lmcinnes/umap


Benefits of using Numba for Custom Algos

• Your library can be pure Python 
• Approach FORTRAN speeds with key functions 
• No need to create arch-dependent binary packages 
• Reduce code-bloat by not having to pre-compile all 

possible type specializations (int16, int32, int64, float32, 
float64, etc) 

• Take advantage of newer SIMD (like AVX-512) when 
available without sacrificing backward compatibility

!16© 2019 Anaconda



© 2019 Anaconda - Confidential & Proprietary

Another Benefit: Write it like FORTRAN

• Numba frees you from some of the constraints of Python, 
so make sure you take advantage of them: 

• Calling small functions is cheap / free (thanks to inlining) 
• Break up big chunky functions 

• Manual loops perform just as well as array functions. 
• Use them when you want to avoid making temporary 

arrays and to improve readability

!17



Custom Data Types: 
OAMap

!18© 2019 Anaconda

Reference: Pivarski, Jim, et al. "Fast access to 
columnar, hierarchically nested data via 
code transformation." Big Data (Big Data), 
2017 IEEE International Conference on. 
IEEE, 2017. 

https://github.com/diana-hep/oamap 

from DIANA-HEP

Object Array Mapping in Python

Perform high-speed calculations on 
columnar data without creating 
intermediate objects. 

Access to LHC data (ROOT data)

Transformed to access to data 
in ROOT, Parquet, etc..

https://github.com/diana-hep/oamap


Benefits of using Numba for Custom Types

• Expand to more specialized use cases than arrays 
• Custom types can create a "mini DSL" in Python 

• Mapping from Python syntax (attribute access, slicing, 
function calls, etc) to implementation is entirely 
overridable 

• Numba implementation of type will be entirely 
independent of Python implementation of type

!19© 2019 Anaconda



© 2019 Anaconda - Confidential & Proprietary

Hardware Support

• Numba is continuously tested on: 
• x86 / x86_64 
• ARMv7 (Raspberry Pi) 
• ARMv8 (64-bit, everything else) 
• PPC64LE (POWER8 and POWER9) 
• NVIDIA GPUs (CUDA) 
• AMD GPUs (ROCm, not working currently) 

• Adding accelerator hardware support to Numba is easier than other compilers 
because of our restricted compilation model

!20



!21

GPU example

(7x faster than Numba-compiled parallel code for CPU)



© 2019 Anaconda - Confidential & Proprietary

CUDA interop

• Numba has been pushing for other projects in the CUDA 
space to be able to share device arrays 

• Can pass CuPy or PyTorch arrays to Numba-compiled 
GPU functions 

• If you like NumPy, look at CuPy, and if you need a GPU 
algorithm not in CuPy, look at Numba.

!22



Using Numba in a Project

• Options for introducing Numba into a code base: 
1. Replace code with a Numba implementation 

• Numba is now a required dependency 
2. Compile functions only when Numba is present 

• Numba is optional dependency 
• Sometimes hard to write one function that maximizes performance both 

with and without Numba 
3. Pick between different implementations of same function at runtime 

• Numba is optional dependency 
• Can tailor each implementation to maximize performance 
• Also good strategy for exploring distributed or GPU-accelerated 

computing

!23© 2019 Anaconda



© 2019 Anaconda - Confidential & Proprietary

Packaging Notes

• Packaging with Numba as a dependency: 
• Add it to your requirements.txt / conda recipe 
• Wheels for (Python 2.7, 3.5-3.7) * (win-32, win-64, osx, linux-32, linux-64) 

available 
• Conda packages for same combinations (some repos don't post Python 3.5 

packages anymore) 
• Numba does not require that end users have a compiler or LLVM present on 

their system if installed from binary packages. 
• If all of your machine code comes via Numba, you can ship your package as 

generic for all platforms ("noarch" in conda, sdist for PyPI).

!24



© 2019 Anaconda - Confidential & Proprietary

Conclusion

• Python is for driving around compiled functions 
• Sometimes you want to create compiled functions with Python 

itself 
• Cython does ahead-of-time translation via C 
• Numba does just-in-time translation directly to machine code 

• No silver bullet, so think about what your needs are, and who 
your user/developer audience is.

!25



© 2019 Anaconda - Confidential & Proprietary

Resources

• Documentation: 
http://numba.pydata.org/numba-doc/latest/index.html 

• Mailing list: 
http://numba.pydata.org/ 

• Github:  
https://github.com/numba/numba 

• Gitter: 
https://gitter.im/numba/numba 

• Feel free to ask general questions on mailing list or Gitter, and open Github 
issues on specific problems.

!26

http://numba.pydata.org/numba-doc/latest/index.html
http://numba.pydata.org/
https://github.com/numba/numba
https://gitter.im/numba/numba


© 2019 Anaconda - Confidential & Proprietary

Thanks!

!27


