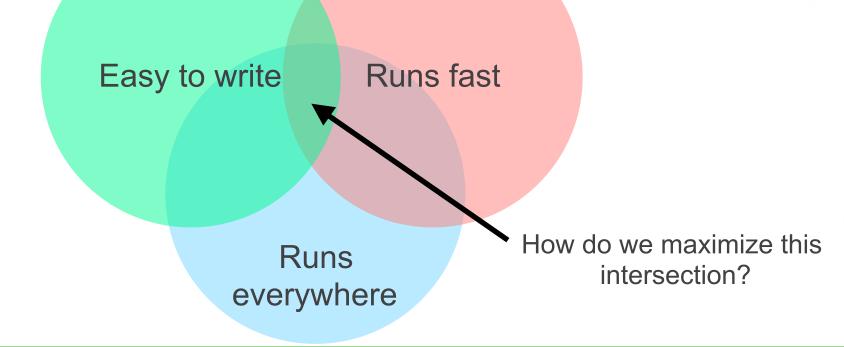


Accelerated Computing in Python (with Numba)

Stan Seibert 2019-10-29

The Goal



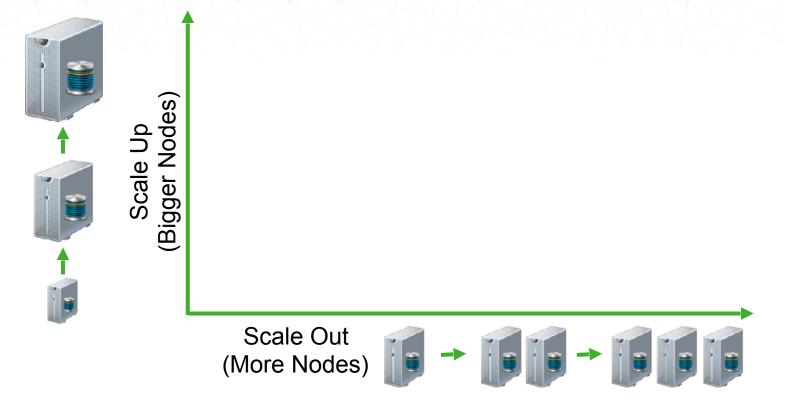
Big Picture: Why Is Python Great?

- (Mostly) straightforward language
 - Easy for users to learn
 - Easy for domain experts to become library authors
- Enormous community of software libraries for scientific computing, "data science", as well as sysadmin, web development, and basically everything else
- Python interpreter is **designed** to interface to compiled libraries:
 - Drive around your favorite C/C++/FORTRAN libraries from the comfort of an interpreter
- Extremely dynamic nature of the language makes almost everything possible

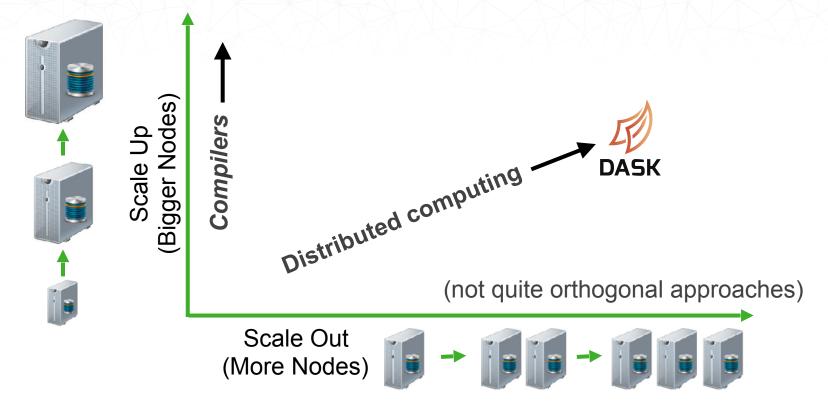
Big Picture: Why Is Python Terrible?

- Extremely dynamic nature of the language makes it easy to write impossible to optimize code
 - But, you don't have to use it that way
- Interpreter is optimized for simplicity and single-threaded execution
 - You can avoid the GIL in compiled extensions
- Compiling all of the Python language is hard
 - Do we actually need to compile all of it?
- Built-in data structures are bad for HPC
 - Fortunately, we have several good extensions already

Getting More Performance



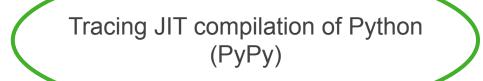
Getting More Performance



The Python Compiler Quadrant

Just in Time	PyPy Pyston Pyjion	Numba Theano
Ahead of Time	ShedSkin Nuitka	Cython Pythran
Ah	Whole Program	Functions

A Compromise Compilation Strategy



JIT + type inference on functions

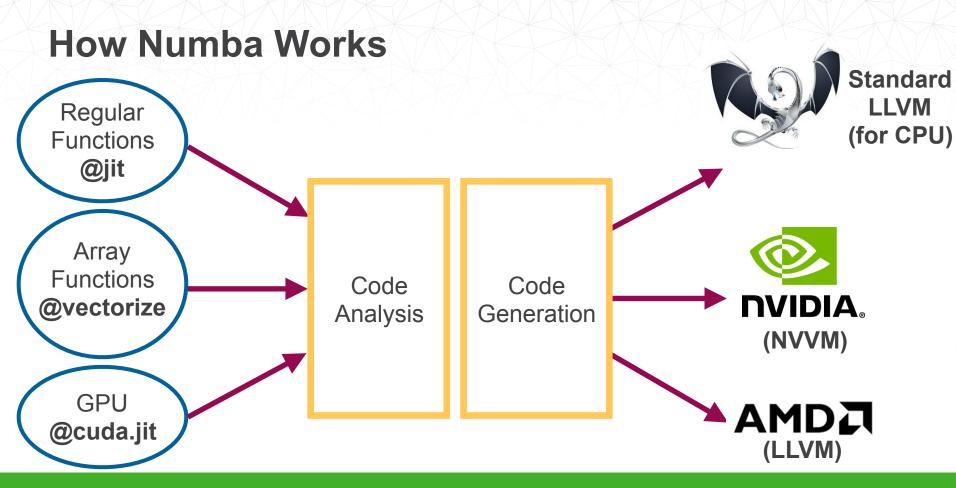
Static translation of Python with type annotations to C (Cython)

What is Numba?

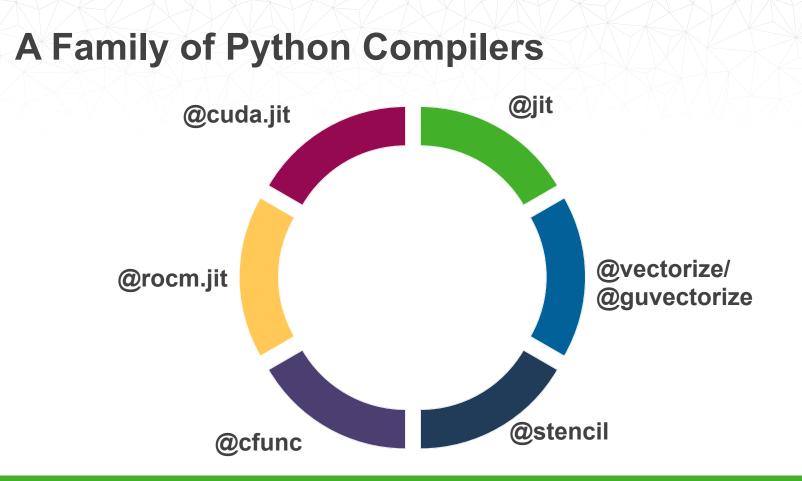
- Numba is an:
 - opt-in
 - type-specializing
 - just-in-time
 - function compiler
 - for numerical Python

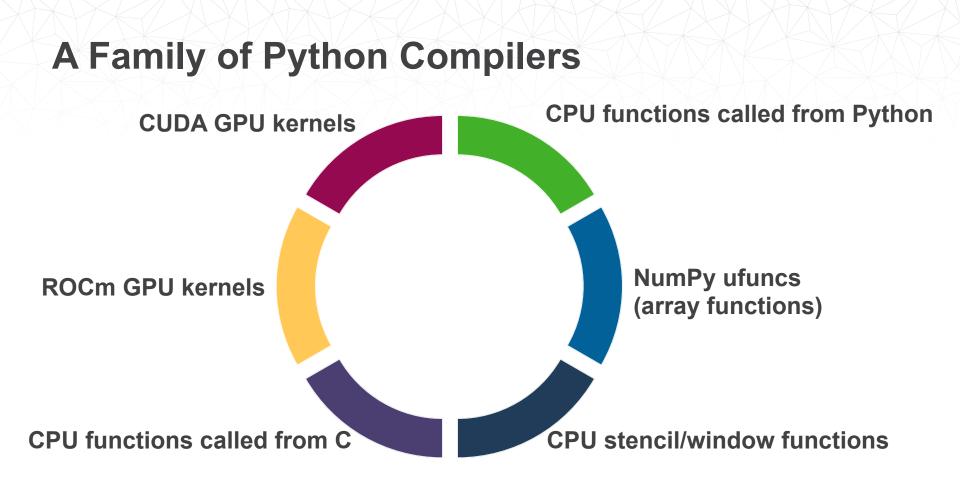
```
@jit(nopython=True)
def nan_compact(x):
    out = np.empty_like(x)
    out_index = 0
    for element in x:
        if not np.isnan(element):
            out[out_index] = element
            out_index += 1
    return out[:out index]
```

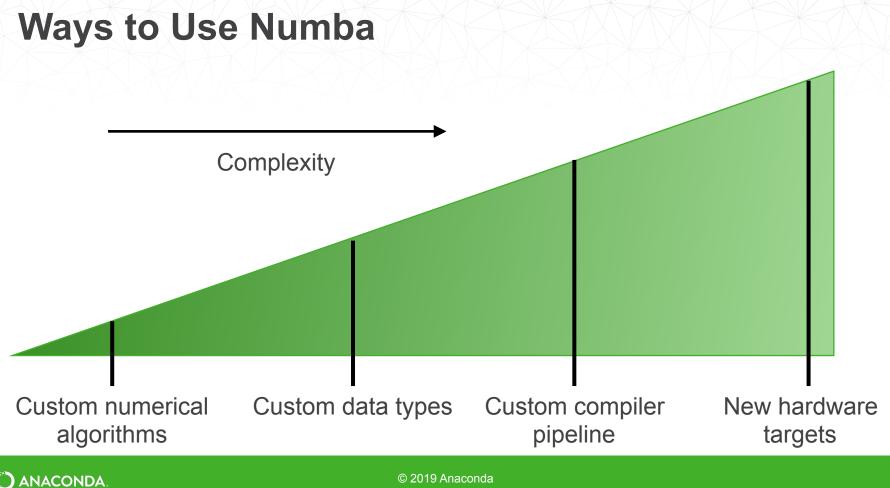
~100x faster than original Python



C ANACONDA.





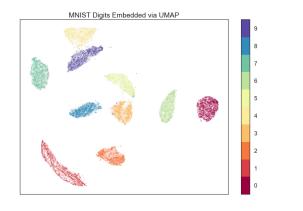


When is Numba unlikely to help?

- Whole program compilation
- Critical functions have already been converted to C or optimized Cython
- Need to interface directly to C++
- Need to generate C/C++ for separate compilation
- Algorithms are not primarily numerical
 - Exception: Numba can do pretty well at bit manipulation

Custom Algorithms: UMAP

- Uniform Manifold Approximation and Projection
- Dimension reduction



Reference: McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

https://github.com/lmcinnes/umap

```
@numba.njit(fastmath=True)
def euclidean(x, y):
    """Standard euclidean distance.
```

```
..math::
```

```
D(x, y) = \left( \frac{x_i - y_i}{2} \right)
```

```
.....
```

11

12

13

14 15

16

17

18 19

20

21

23 24

25

26

28

29

30

31 32

33

34

35 36

```
result = 0.0
for i in range(x.shape[0]):
    result += (x[i] - y[i]) ** 2
return np.sqrt(result)
```

```
@numba.njit()
```

```
def standardised_euclidean(x, y, sigma=_mock_ones):
    """Euclidean distance standardised against a vector of standard
    deviations per coordinate.
```

```
..math::
    D(x, y) = \sqrt{\sum_i \frac{(x_i - y_i)**2}{v_i}}
"""
result = 0.0
for i in range(x.shape[0]):
    result += ((x[i] - y[i]) ** 2) / sigma[i]
```

```
return np.sqrt(result)
```

🔿 ANACONDA.

Benefits of using Numba for Custom Algos

- Your library can be pure Python
- Approach FORTRAN speeds with key functions
- No need to create arch-dependent binary packages
- Reduce code-bloat by not having to pre-compile all possible type specializations (int16, int32, int64, float32, float64, etc)
- Take advantage of newer SIMD (like AVX-512) when available without sacrificing backward compatibility

Another Benefit: Write it like FORTRAN

- Numba frees you from some of the constraints of Python, so make sure you take advantage of them:
 - Calling small functions is cheap / free (thanks to inlining)
 - Break up big chunky functions
 - Manual loops perform just as well as array functions.
 - Use them when you want to avoid making temporary arrays and to improve readability

Custom Data Types: OAMap

from **DIANA-HEP**

Object Array Mapping in Python

Perform high-speed calculations on columnar data without creating intermediate objects.

Access to LHC data (ROOT data)

Reference: Pivarski, Jim, et al. "Fast access to columnar, hierarchically nested data via code transformation." *Big Data (Big Data)*, 2017 IEEE International Conference on. IEEE, 2017.

https://github.com/diana-hep/oamap

import numba import oamap.compiler # crucial! loads OAMap extensions! @numba.njit def period_ratio(stars): Transformed to access to data out = [] in ROOT, Parquet, etc.. for star in stars: best ratio = None for one in star.planets: for two in star.planets: if (one.orbital_period is not None and one.orbital_period.val is two.orbital_period is not None and two.orbital_period.val is ratio = one.orbital_period.val / two.orbital_period.val if best_ratio is None or ratio > best_ratio: best ratio = ratio II Dest_ratio is not wone and Dest_ratio > 200: out.append(star) return out # The benefit of compiling is lost on a small dataset like this (compilation tim

fine benefit of compiling is lost on a small dataset like this (compilation t)
but I'm sure you can find a much bigger one. :)

>>> extremes = period_ratio(stars)

Now that we've filtered with compiled code, we can examine the outliers in Pyt
>>> extremes

Benefits of using Numba for Custom Types

- Expand to more specialized use cases than arrays
- Custom types can create a "mini DSL" in Python
 - Mapping from Python syntax (attribute access, slicing, function calls, etc) to implementation is entirely overridable
- Numba implementation of type will be entirely independent of Python implementation of type

Hardware Support

- Numba is continuously tested on:
 - x86 / x86_64
 - ARMv7 (Raspberry Pi)
 - ARMv8 (64-bit, everything else)
 - PPC64LE (POWER8 and POWER9)
 - NVIDIA GPUs (CUDA)
 - AMD GPUs (ROCm, not working currently)
- Adding accelerator hardware support to Numba is easier than other compilers because of our restricted compilation model

GPU example

```
@cuda.jit
def simulate(rng, n, prob, max win, max lose, out):
    tid = cuda.grid(1)
    step = cuda.gridsize(1)
    for i in range(tid, n, step):
        win = 0
        lose = 0
        while win < max win \
                and lose < max lose:
            if xoroshiro128p uniform float32(rng, tid) < prob:</pre>
                win += 1
            else:
                lose += 1
        cuda.atomic.add(out, 0, win)
```

(7x faster than Numba-compiled parallel code for CPU)

🔿 ANACONDA.

CUDA interop

- Numba has been pushing for other projects in the CUDA space to be able to share device arrays
- Can pass CuPy or PyTorch arrays to Numba-compiled GPU functions
- If you like NumPy, look at CuPy, and if you need a GPU algorithm not in CuPy, look at Numba.

Using Numba in a Project

- Options for introducing Numba into a code base:
 - 1. Replace code with a Numba implementation
 - Numba is now a required dependency
 - 2. Compile functions only when Numba is present
 - Numba is optional dependency
 - Sometimes hard to write one function that maximizes performance both with and without Numba

3. Pick between different implementations of same function at runtime

- Numba is optional dependency
- Can tailor each implementation to maximize performance
- Also good strategy for exploring distributed or GPU-accelerated computing

Packaging Notes

- Packaging with Numba as a dependency:
 - Add it to your requirements.txt / conda recipe
 - Wheels for (Python 2.7, 3.5-3.7) * (win-32, win-64, osx, linux-32, linux-64) available
 - Conda packages for same combinations (some repos don't post Python 3.5 packages anymore)
- Numba **does not** require that end users have a compiler or LLVM present on their system if installed from binary packages.
- If all of your machine code comes via Numba, you can ship your package as generic for all platforms ("noarch" in conda, sdist for PyPI).

Conclusion

- Python is for driving around compiled functions
- Sometimes you want to create compiled functions with Python itself
 - Cython does ahead-of-time translation via C
 - Numba does just-in-time translation directly to machine code
- No silver bullet, so think about what your needs are, and who your user/developer audience is.

Resources

• Documentation:

http://numba.pydata.org/numba-doc/latest/index.html

- Mailing list: <u>http://numba.pydata.org/</u>
- Github: <u>https://github.com/numba/numba</u>
- Gitter:
 <u>https://gitter.im/numba/numba</u>
- Feel free to ask general questions on mailing list or Gitter, and open Github issues on specific problems.

Thanks!

