
XENONnT DAQ and processing

Jelle Aalbers

Work with Daniel Coderre, Chris Tunnell, Darryl Masson, Peter Gaemers, Joran Angevaare,
and several others.

28 October 2019

https://github.com/AxFoundation/strax
https://github.com/XENONnT/straxen
https://github.com/coderdj/redax

https://github.com/AxFoundation/strax
https://github.com/XENONnT/straxen
https://github.com/coderdj/redax

raw_records

records

peaks

pe
ak

_b
as

ic
s

...
_p

os
iti

on
s

...

ev
en

ts

...
_p

os
iti

on
s

...

PMT waveforms

Fixed-length fragments

O(PB/year) compressed

Factor ~4 reduction:

removed single el. trains

and baseline samples

S1/S2 sum wf.s / hitpatterns

O(20 TB/year)

High-level info:

O(TB /year)

http://www.youtube.com/watch?v=MnEno2-LjkA

Analysis perspective

Analyst:
“Load event_basics for run 142,
 with S1 coincidence requirement = 2”

Strax, behind the scenes:
 1. Build graph of dependencies
 2. Find which data types can be loaded
 3. Compute others that are needed

Analyst receives dataframe

Computed dataframes are now stored
(with tracking of the custom options)

Why is it so much faster?

DAQ stores raw data differently

strax

Return type in comment (hopefully)
Specify branch selection (or run slow)
Data is in nested objects (unlike in analysis)

Return type declared: searchable
Dependencies declared: trackable
Data is in numpy arrays: exactly like analysis

hax
“Minitree” code comparison

