XENONNT DAQ and processing

Jelle Aalbers

Work with Daniel Coderre, Chris Tunnell, Darryl Masson, Peter Gaemers, Joran Angevaare,
and several others.

28 October 2019
[\ & o,
S e
https://github.com/AxFoundation/strax ". “—’/,/vh «°
https://github.com/XENONNT/straxen (:; e xS
P fFzeew Stockholm

https://github.com/coderdi/redax

centre University

https://github.com/AxFoundation/strax
https://github.com/XENONnT/straxen
https://github.com/coderdj/redax

Website

(nodedS)
e e
e N
pr— Runs DB
HE (mongoDB)
veto | e Tape
l »
> GRID
2 w = disks
N o [
N~ o
> o > :
> > 3 5 Analysis
E e hub
() —>
< X
A O A%
‘ A i S
Y

peaks
S1/S2 sum wf.s / hitpatterns
records O(20 TBlyear)

peak_basics
..._positions

Factor ~4 reduction:

!
event_positions ’

removed single el. trains

..._positions

events

and baseline samples

High-level info:
O(TB /year)

raw_records

event_basics

@{
'

PMT waveforms
Fixed-length fragments

O(PB/year) compressed

.
o

Ton PMT Patees

Vest o Waestoom

Ratars FNTFattem

.........................

http://www.youtube.com/watch?v=MnEno2-LjkA

Analysis perspective

event bas1cs

s/

n competlng

Analyst:
“Load event basics for run 142,
with S1 coincidence requirement = 2”

peak_classification

Strax, behind the scenes:

1. Build graph of dependencies
2. Find which data types can be loaded
3. Compute others that are needed

Analyst receives dataframe

Computed dataframes are now stored
(with tracking of the custom options)

raw_records

Why is it so much faster?

Simple arrays >> lists of custom objects

Object creation has a penalty evenin C

Example: make a histogram of tau-tau jets in CMS
0.018 MHz full framework (CMSSW, single-threaded C++)
0.029 MHz load all 95 jet branches in ROOT
2.8 MHz load jet pr branch (and no others) in ROOT
12 MHz allocate C++ objects on heap, fill, delete
31 MHz allocate C++ objects on stack, fill histogram
250 MHz minimal “for” loop in memory (single-threaded C

Pivarski, J. et. al. "Toward real-time data query systems in HEP" ACAT 2017 proceedings, arXiv:1711.01229

In python, object-level code is particularly slow '
... but numpy and numba allow array ops at native performance : -

Avoiding variable-length objects

Time
Data

130214564

130214575

130214580

130214590

XENON1T / pax: pulses

Channel

24

12

192

87

— .
PR,
W ——
MMt .

DAQ stores raw data differently

XENONNT / strax: "records" / "fragments™

Time

130214564

130214575

130214580

130214590

130214590

130214590

Channel

24

12

192

87

87

87

Baselining/hitfinding take this splitting into account. Sum waveform is indifferent.

index

0

Data

.
P
. —
—
Y

“Minitree” code comparison

hax strax

class LargestS2Area(hax.minitrees.TreeMaker):

_ class LargestS2Area(strax.LoopPlugin):
"""Find the largest S2 area in the event.

“""Find the largest S2 area in the event.

Provides:

,) ‘ __version = '0.1'
- largest s2 area: Area (PE) of largest S2 in the event

depends on = ('events', 'peak_basics', 'peak_classification’)

' ' ' ' dtype = [
['peaks.area’, 'peaks.type’] ('largest_s2_area', np.float32,
'Area (PE) of largest S2 in event')]

__version__ = '0.1"
branch selection =

def extract data(self, event):
def compute loop(self, event, peaks):
s2 areas = [] -
for p in event.peaks:

s2s = peaks|[peaks['type'] == 2]
if p.type != 's2': i . i

continue result = 0
s2 _areas.append(p.area) if len(s2s):
result = s2s['area'].max()
result = 0

if len(s2 areas):

return dict(largest s2 area=result)
result = max(s2_areas)

return dict(largest s2 area=result)

Return type in comment (hopefully) Return type declared: searchable
Specify branch selection (or run slow) Dependencies declared: trackable
Data is in nested objects (unlike in analysis) Data is in numpy arrays: exactly like analysis

