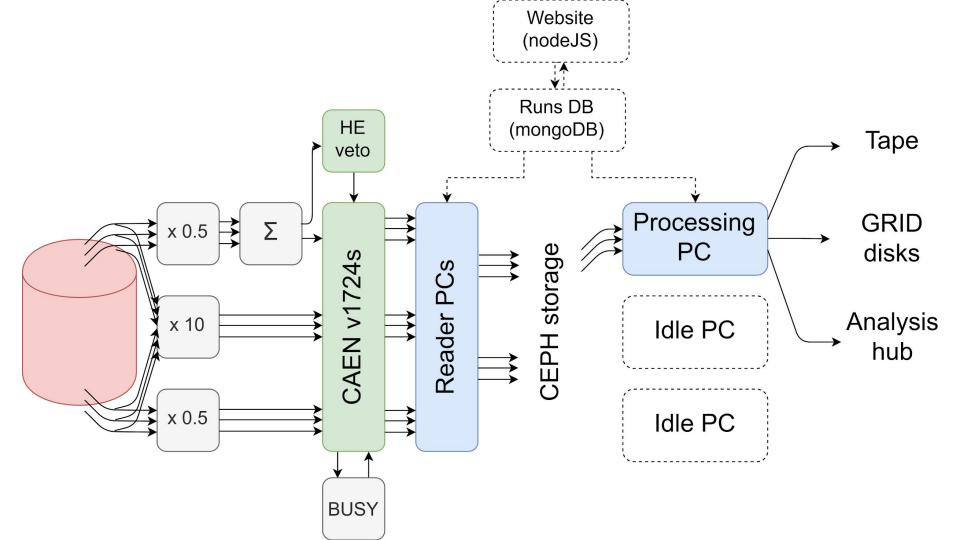
XENONnT DAQ and processing

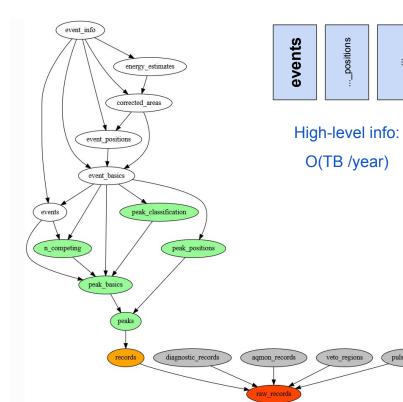
Jelle Aalbers


Work with Daniel Coderre, Chris Tunnell, Darryl Masson, Peter Gaemers, Joran Angevaare, and several others.

28 October 2019

https://github.com/AxFoundation/strax https://github.com/XENONnT/straxen https://github.com/coderdj/redax

records

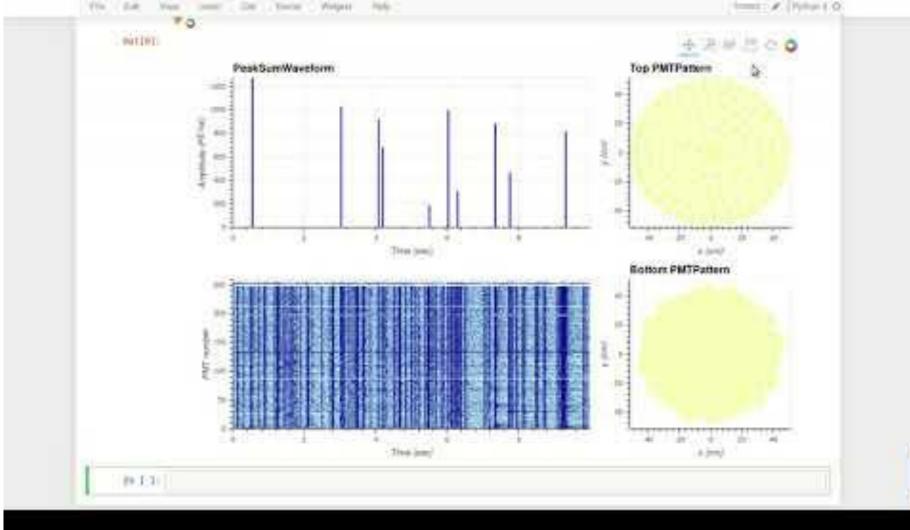

Factor ~4 reduction: removed single el. trains and baseline samples

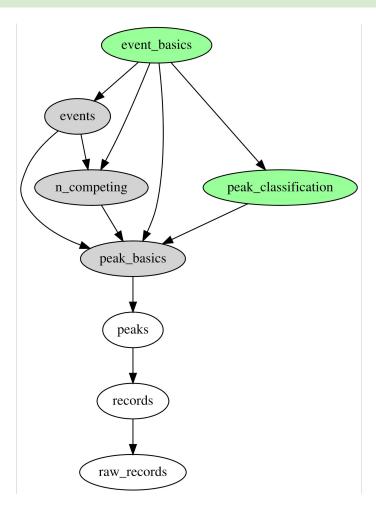
raw_records

PMT waveforms Fixed-length fragments O(PB/year) compressed

peaks

S1/S2 sum wf.s / hitpatterns O(20 TB/year)





÷

pulse_counts

peak_basics

Analyst: "Load event_basics for run 142, with S1 coincidence requirement = 2"

Strax, behind the scenes:1. Build graph of dependencies2. Find which data types can be loaded3. Compute others that are needed

Analyst receives dataframe

Computed dataframes are now stored (with tracking of the custom options)

Simple arrays >> lists of custom objects

Object creation has a penalty even in C

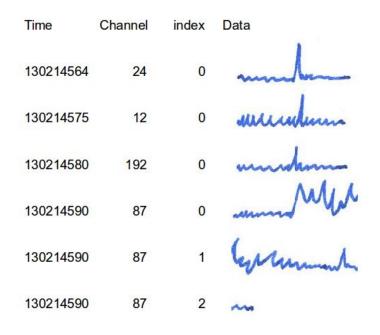
Example: make a histogram of tau-tau jets in CMS

0.018 MHzfull framework (CMSSW, single-threaded C++)0.029 MHzload all 95 jet branches in ROOT2.8 MHzload jet p_T branch (and no others) in ROOT12 MHzallocate C++ objects on heap, fill, delete31 MHzallocate C++ objects on stack, fill histogram250 MHzminimal "for" loop in memory (single-threaded C)

Pivarski, J. et. al. "Toward real-time data query systems in HEP" ACAT 2017 proceedings, arXiv:1711.01229

In python, object-level code is particularly slow

... but numpy and numba allow array ops at native performance



Avoiding variable-length objects

XENON1T / pax: pulses

XENONnT / strax: "records" / "fragments"

Baselining/hitfinding take this splitting into account. Sum waveform is indifferent.

"Minitree" code comparison

hax

```
class LargestS2Area(hax.minitrees.TreeMaker):
"""Find the largest S2 area in the event.
Provides:
 - largest s2 area: Area (PE) of largest S2 in the event
0.0.0
  version = '0.1'
branch selection = ['peaks.area', 'peaks.type']
def extract data(self, event):
    s2 areas = []
    for p in event.peaks:
        if p.type != 's2':
            continue
        s2 areas.append(p.area)
    result = 0
    if len(s2 areas):
        result = max(s2 areas)
    return dict(largest s2 area=result)
```

Return type in comment (hopefully) Specify branch selection (or run slow) Data is in nested objects (unlike in analysis)

strax

```
class LargestS2Area(strax.LoopPlugin):
"""Find the largest S2 area in the event.
0 0 0
  version = '0.1'
depends on = ('events', 'peak basics', 'peak classification')
dtype = [
    ('largest s2 area', np.float32,
        'Area (PE) of largest S2 in event')]
def compute loop(self, event, peaks):
    s2s = peaks[peaks['type'] == 2]
    result = 0
    if len(s2s):
        result = s2s['area'].max()
    return dict(largest s2 area=result)
```

Return type declared: searchable Dependencies declared: trackable Data is in numpy arrays: exactly like analysis