XENONNT DAQ and processing

Jelle Aalbers

Work with Daniel Coderre, Chris Tunnell, Darryl Masson, Peter Gaemers, Joran Angevaare,
and several others.
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http://www.youtube.com/watch?v=MnEno2-LjkA

Analysis perspective

event bas1cs

s/

n competlng

Analyst:
“Load event basics for run 142,
with S1 coincidence requirement = 2”

peak_classification

Strax, behind the scenes:

1. Build graph of dependencies
2. Find which data types can be loaded
3. Compute others that are needed

Analyst receives dataframe

Computed dataframes are now stored
(with tracking of the custom options)

raw_records









Why is it so much faster?

Simple arrays >> lists of custom objects

Object creation has a penalty evenin C

Example: make a histogram of tau-tau jets in CMS
0.018 MHz full framework (CMSSW, single-threaded C++)
0.029 MHz load all 95 jet branches in ROOT
2.8 MHz load jet pr branch (and no others) in ROOT
12 MHz allocate C++ objects on heap, fill, delete
31 MHz allocate C++ objects on stack, fill histogram
250 MHz minimal “for” loop in memory (single-threaded C

Pivarski, J. et. al. "Toward real-time data query systems in HEP" ACAT 2017 proceedings, arXiv:1711.01229

In python, object-level code is particularly slow '
... but numpy and numba allow array ops at native performance : -



Avoiding variable-length objects
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DAQ stores raw data differently

XENONNT / strax: "records" / "fragments™
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Baselining/hitfinding take this splitting into account. Sum waveform is indifferent.
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“Minitree” code comparison

hax strax

class LargestS2Area(hax.minitrees.TreeMaker):

_ class LargestS2Area(strax.LoopPlugin):
"""Find the largest S2 area in the event.

“""Find the largest S2 area in the event.

Provides:

, ) ‘ __version = '0.1'
- largest s2 area: Area (PE) of largest S2 in the event

depends on = ('events', 'peak_basics', 'peak_classification’)

' ' ' ' dtype = [
['peaks.area’, 'peaks.type’] ('largest_s2_area', np.float32,
'Area (PE) of largest S2 in event')]

__version__ = '0.1"
branch selection =

def extract data(self, event):
def compute loop(self, event, peaks):
s2 areas = [] -
for p in event.peaks:

s2s = peaks|[peaks['type'] == 2]
if p.type != 's2': i . i

continue result = 0
s2 _areas.append(p.area) if len(s2s):
result = s2s['area'].max()
result = 0

if len(s2 areas):

return dict(largest s2 area=result)
result = max(s2_areas)

return dict(largest s2 area=result)

Return type in comment (hopefully) Return type declared: searchable
Specify branch selection (or run slow) Dependencies declared: trackable
Data is in nested objects (unlike in analysis) Data is in numpy arrays: exactly like analysis



