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PMT waveforms

Fixed-length fragments

O(PB/year) compressed

Factor ~4 reduction:

removed single el. trains

and baseline samples 

S1/S2 sum wf.s / hitpatterns

O(20 TB/year)

High-level info:

O(TB /year)



http://www.youtube.com/watch?v=MnEno2-LjkA


Analysis perspective

Analyst: 
“Load event_basics for run 142, 
 with S1 coincidence requirement = 2”

Strax, behind the scenes:
  1. Build graph of dependencies
  2. Find which data types can be loaded
  3. Compute others that are needed

Analyst receives dataframe

Computed dataframes are now stored
(with tracking of the custom options)







Why is it so much faster?



DAQ stores raw data differently



strax

Return type in comment (hopefully)
Specify branch selection (or run slow)
Data is in nested objects (unlike in analysis)

Return type declared: searchable
Dependencies declared: trackable
Data is in numpy arrays: exactly like analysis

hax
“Minitree” code comparison


