Future of Data Analysis: a Glimpse from EXO-200

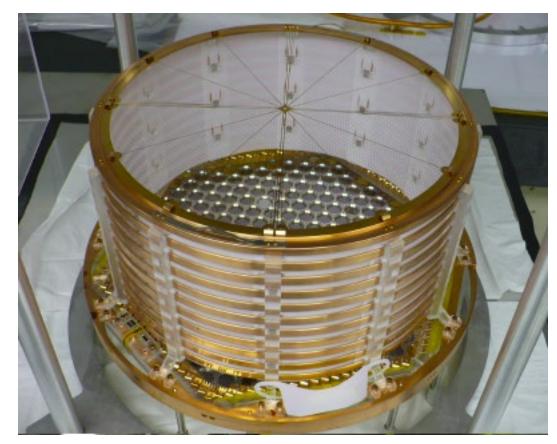
Igor Ostrovskiy – University of Alabama

DANCE Workshop

October 2019

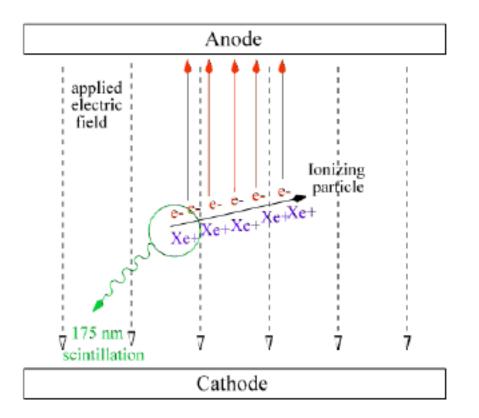
EXO-200

- Double-sided with shared cathode
 - One side shown
 - -8 kV (-12 kV) on cathode in Phase I (II)
- Single phase liquid xenon
 - Enriched to 80.6% in ^{136}Xe
 - ~175 kg in liquid phase
 - ~90 kg fiducial mass
- Retired in December 2018



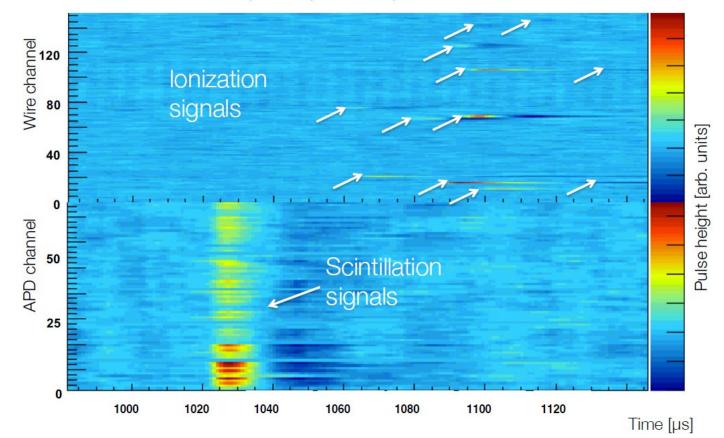
EXO-200

- Each side detects both charge and light
- 38x2 U-wire channels for charge collection
 - 800 e- noise per wire
- 38x2 V-wire channels for charge induction
 - Crossed at 60° with U-wires
- 74x2 APD channels for light
 - Each channel is a chain of 7 LAAPDs
 - Cathode is mostly transparent (mesh)
 - Cylindrical Teflon reflector

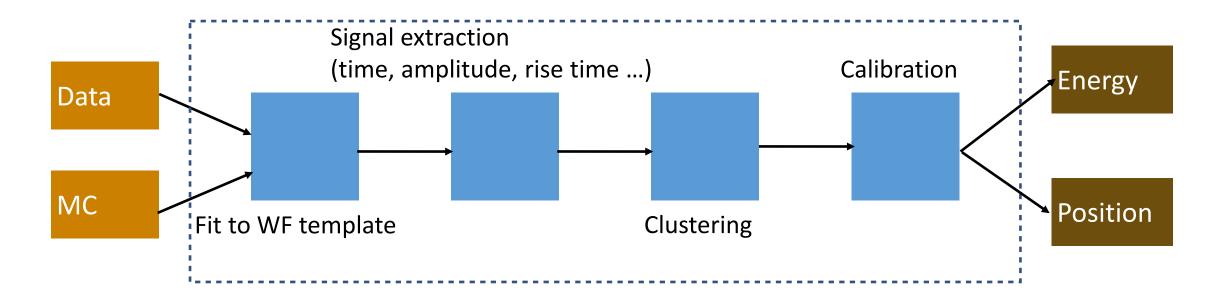


EXO-200 data

Example multiple-scatter y event in EXO-200:

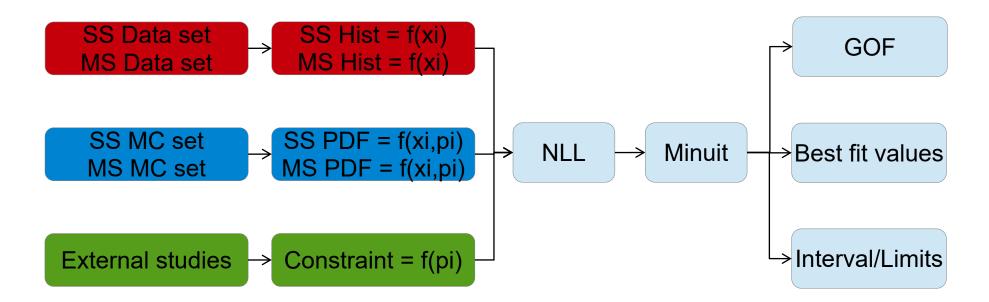


EXO analysis in broad strokes: reconstruction



- Multiple algorithmic steps
- Done by different people over the course of several years
- Imperfections in each step can add systematics

EXO analysis in broad strokes: point/interval estimation



- MC based PDFs, binned extended NLL with systematics constraints
- Profile likelihood for interval construction
- Systematics due to recon and MC errors. Measured or estimated using calibration data

Deep Neural Networks (DNN) in broad strokes

- DNN contains many tunable (trainable) parameters
- Training is done by minimizing discrepancy between truth and network's output
 - E.g., RMS deviation between known and predicted energy
- Minimization is done, essentially, by gradient descent (like MIGRAD), but with some new tricks to efficiently handle multitude of parameters

Deep Neural Networks in EXO

 Can circumvent intermediate steps and extract high level information directly from raw waveforms?

• YES

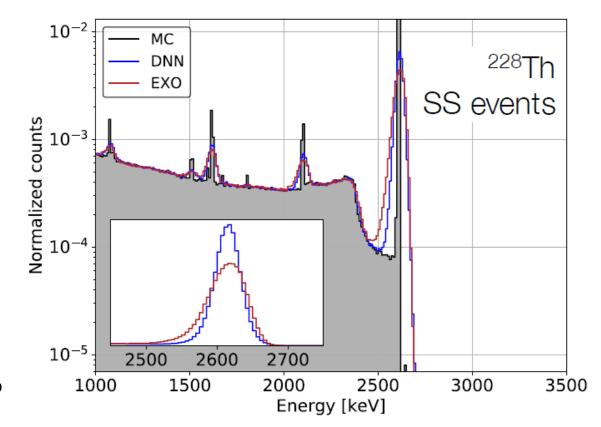
• Can validate results on real detector data, not just MC?

• YES

- Even then, if using MC truth during training, would be limited by how well MC models data (as some standard analysis steps are). Can reduce reliance on MC?
 - YES (Sometimes)

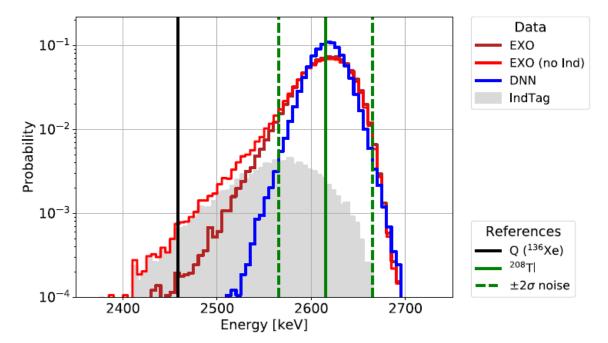
• JINST **13** P08023 (2018), <u>https://iopscience.iop.org/article/10.1088/1748-0221/13/08/P08023</u>

- Reconstruction works on MC over the energy range under study
- Resolution (σ) at the ²⁰⁸Tl full absorption peak (2615 keV):
 - DNN: 1.21% (SS: 0.73%)
 - EXO Recon: 1.35% (SS: 0.93%)
- Network outperforms in disentangling mixed induction and collection signals (see valley before ²⁰⁸Tl peak, right in $0\nu\beta\beta$ ROI)
- Applied to data and anti-corrleated with scintillation (EXO recon'd), the DNN based "rotated" resolution outperforms EXO by 2-6% (depending on the week)



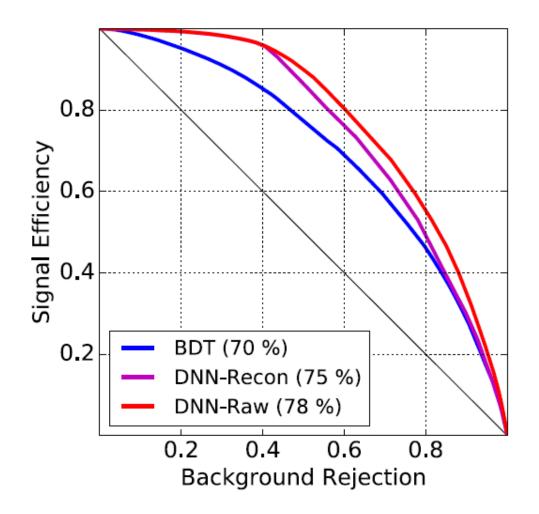
First application: A note on the "Black box"

- The better performance of the DNN alerted that something was lacking in the "traditional" approach and triggered improvements in EXO recon
- While the cause is now largely understood (handling of mixed induction and collection signals), the developed "traditional" solution is still outperformed by the DNN



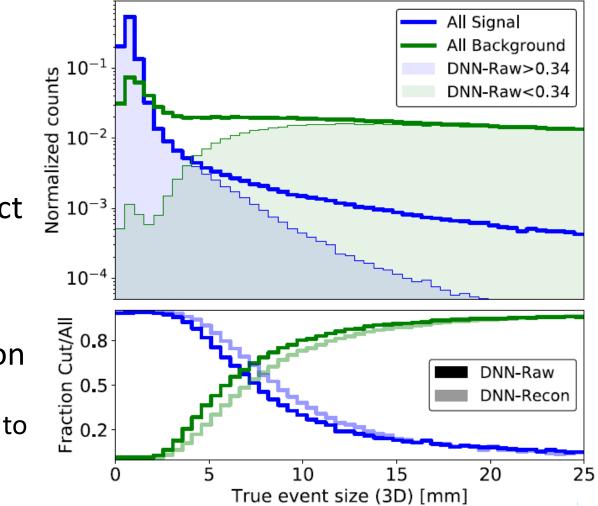
Second application: Signal/Background Discrimination

- A compromise approach (to make it by externally constrained timeline of the final EXO-200 paper)
 - Binary ($\beta\beta$ vs γ) DNN based discriminator as an additional variable to the "traditional" ML fit
 - DNN trained on waveforms re-generated from EXO recon'd signals (not on raw waveforms)
- DNN outperforms previously used BDT discriminator
- Overall 25% sensitivity improvement, compared to non-ML based analysis
 - Phys. Rev. Lett. 123, 2019, 161802
 - Kudos to grad. students who make this happen (Tobias Ziegler&Mike Jewel most of all)



Second application: Signal/Background Discrimination

- $\beta\beta$ events are more localized than γ
- DNN efficiency demonstrates correlation with the true event size in the MC
- Indicates that the DNN picks up correct features of the waveform when reconstructing events
- Data/MC agreement of the "DNN variable" validated with real calibration data
 - Agreement not perfect, but comparable to other "shape" errors.



Where all this might be going + Current Challenges

- Can we throw away most of the traditional analysis infrastructure and go from ~waveforms directly to physics result?
 - Requires only MC and existing widely used DL software frameworks
- We know that we can go from waveforms directly to high level features (Energy, Position, etc.)
- The open question is what to do with event classification? How to get from waveforms to the Final Physics Result?
 - Currently used EXO-200 solution is a half-measure
 - Need a rigorous treatment of statistical and systematic errors of a DNN
 - More on this in Mo's talk

+ Current Challenges

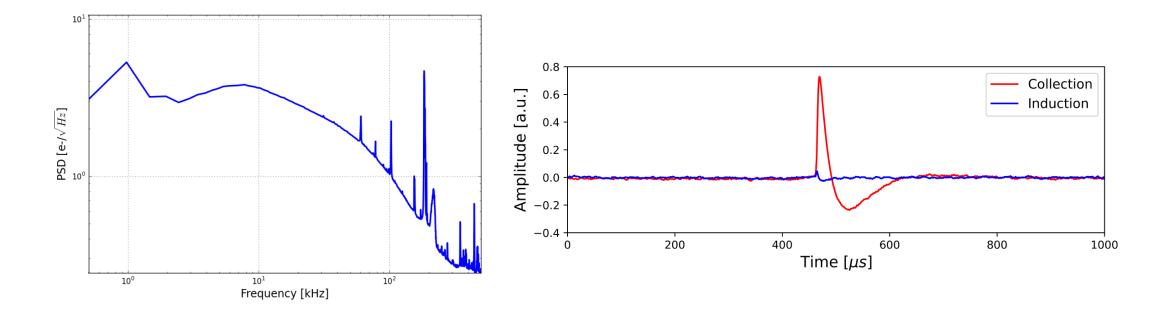
- The "black box" critique remains a hard challenge
 - Doing what we can validating on data whenever possible, trying to correlate chosen events with salient properties
- Since we need waveforms, scaling to next generation may become an issue
 - In EXO-200, 0.5M training events take up 0.25 TB full (ROOT), but this gets cropped down to 25 GB when cropped and pre-selected (hdf5)

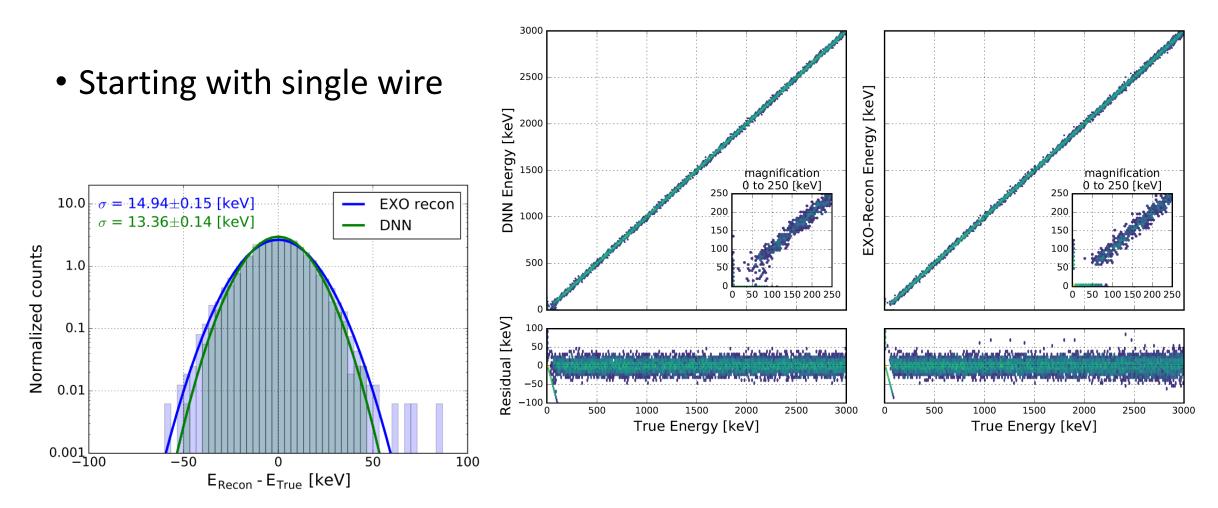
Summary

- EXO-200 has demonstrated the potential of deep neural networks for the data analysis of a Onu experiment directly from raw data
 - Improved energy resolution compared to standard approach
 - Improved sensitivity to neutrinoless double beta decay
 - Reconstructed position using scintillation light without using Monte Carlo
 - Validated on real detector data
- DNNs can potentially revolutionize the way we do analysis, completely or significantly reducing the need for dedicated experiment- or even field-specific software frameworks
 - The advantage is less overhead for doing physics
- Before this can happen, need to better understand statistical and systematic properties of DNN based discriminators

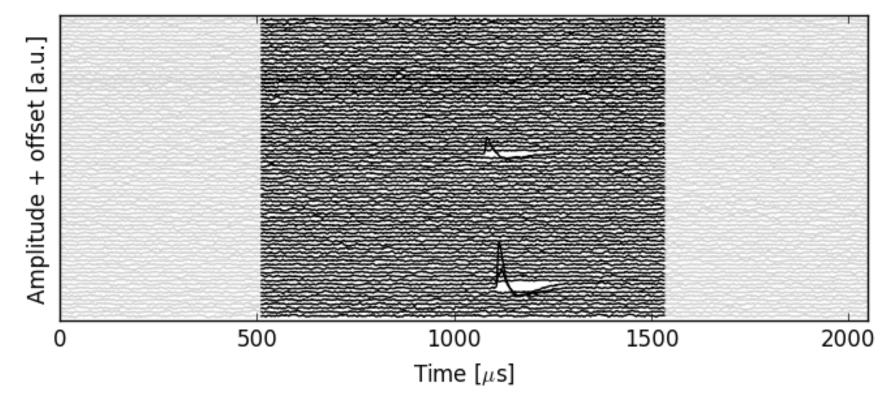
Backup slides

• The main challenges of charge reconstruction are noise and disentangling U-wire signal into induction and collection

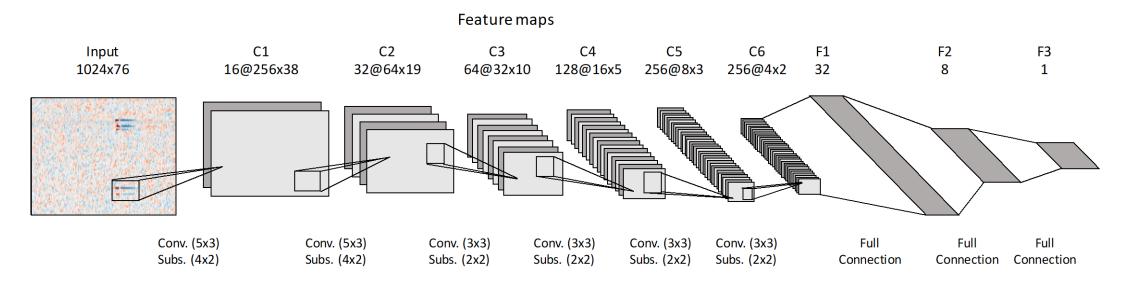




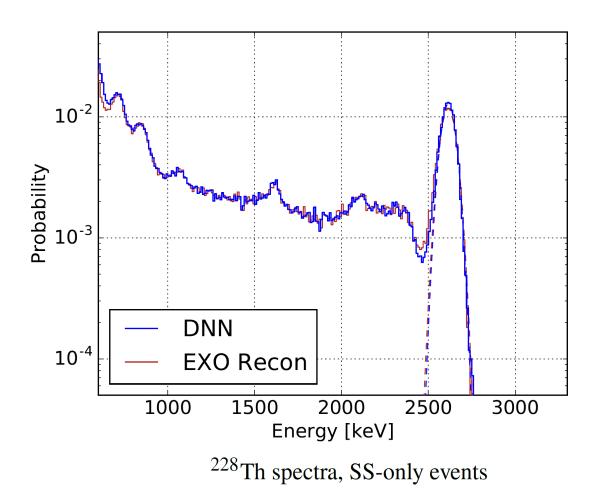
- Now full events all 76 U-wire waveforms (1024 time samples)
- Minimal Preprocessing: correct channel gains + crop waveforms



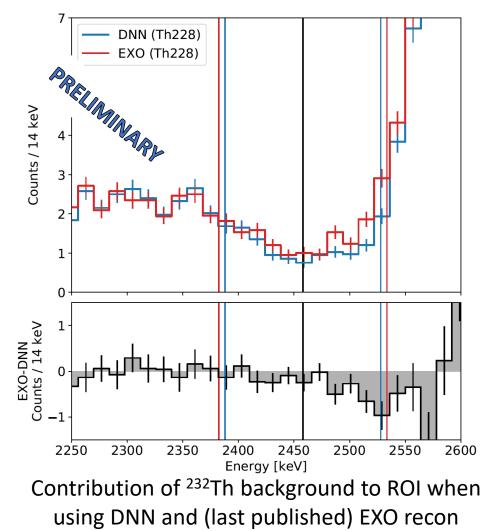
- Input waveform image
- Convolutional part extracts features from image
- Dense part extracts target variable(s) from features



- Works on real calibration events over the energy range under study
 - Residuals w/o energy dependent features
- Resolution (σ) at the ²⁰⁸Tl full absorption peak when combining with light channel from EXO Recon:
 - DNN: 1.65% (SS: 1.50%)
 - EXO Recon: 1.70% (SS: 1.61%)
- Fewer events in the dip means less Th background in ROI

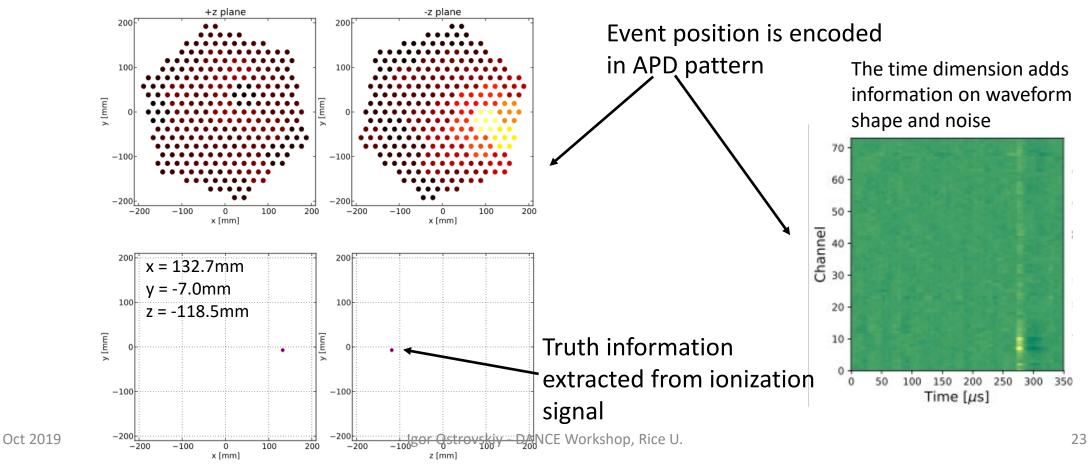


- It's not only about reconstruction better induction disentangling and slightly better rotated resolution already make a quantifiable improvement to physics goals
- Projected ~26% reduction of ²³²Th background in Phase I and ~18% in Phase II compared to standard recon
 - ~15% and ~11%, respectively, considering induction effect alone
 - Using $1/\sqrt{B}$ scaling, this suggests ~9% sensitivity improvement for Phase I and ~5% for Phase II



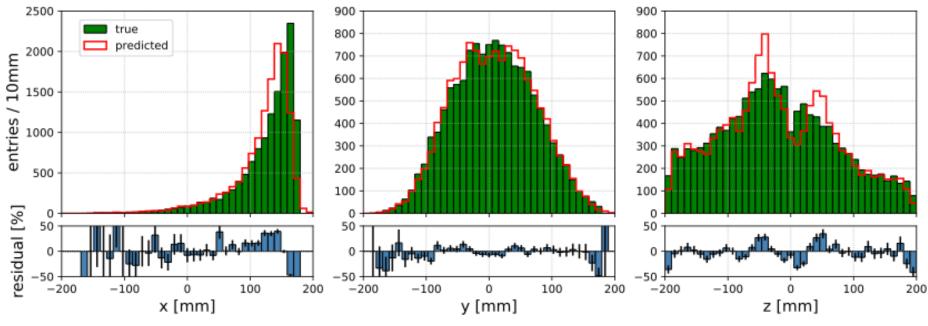
Second application: light position reconstruction

- Event position reconstruction from scintillation light
- Truth label provided by ionization information of real data
- Input are all 74 raw APD real data waveforms cropped to 350 μs



Second application: light position reconstruction

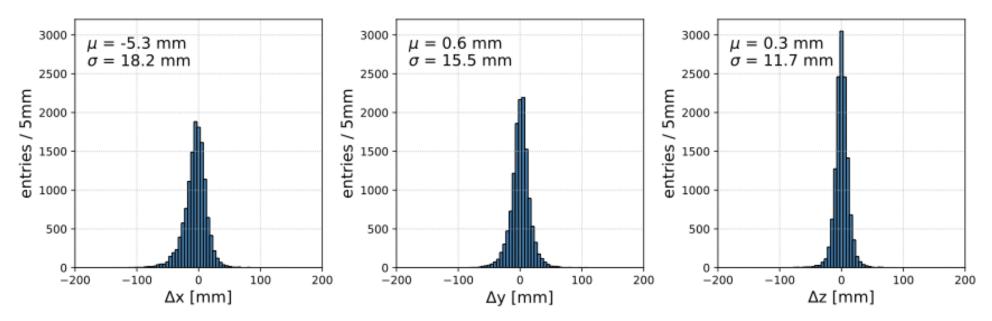
- Loss function reaches 200 mm² after training the DNN for 200 epochs
- The corresponding resolution in 3D is 25 mm
- The model is tested on different types of source data at different locations
- No light position reconstruction in standard analysis, so no comparison so far



Accuracy: 22.5mm ($d_x = 13.6$ mm, $d_y = 11.3$ mm, $d_z = 8.1$ mm) corresponding to $R^2 = 0.99$

Second application: light position reconstruction

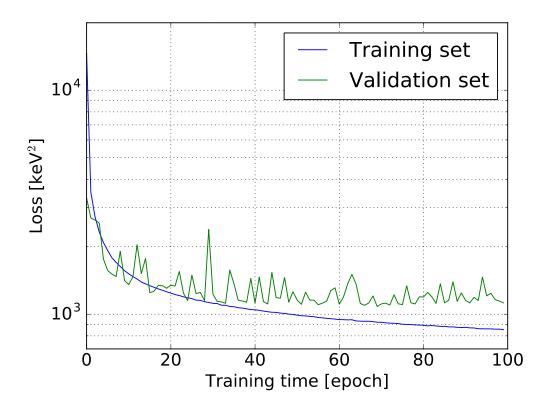
- Loss function reaches 200 mm² after training the DNN for 200 epochs
- The corresponding resolution in 3D is 25 mm
- The model is tested on different types of source data at different locations
- No light position reconstruction in standard analysis, so no comparison so far



Accuracy: 22.5mm (d_x = 13.6mm, d_y = 11.3mm, d_z = 8.1mm) corresponding to R^2 = 0.99

Charge reconstruction training details

- Training data:
 - Simulated events
 - Gamma ray source
 - Detector response uniform in energy
- Training:
 - 720 000 training events
 - 100 epochs
- Technical details:
 - Adam optimizer
 - Minimize mean square error
 - L2 regularization
 - ReLU activation
 - Uniform Glorot initialization



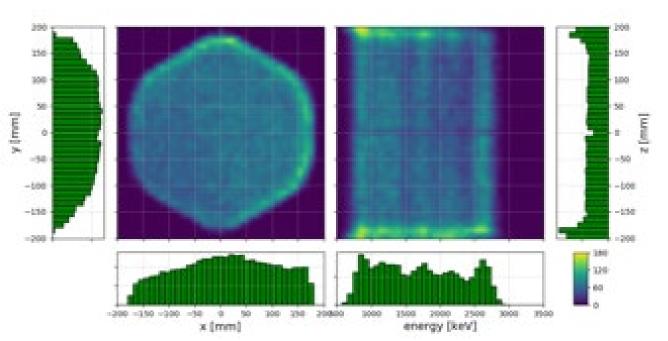
Light reconstruction details

- Waveform image is fed to CNN consisting of 4 convolutional and 3 fully connected layers
- Output has three units corresponding to event x-, y-, z-coordinates
- Loss function is Euclidean loss with L2 regularization

 $L = C + \lambda \cdot R$ where

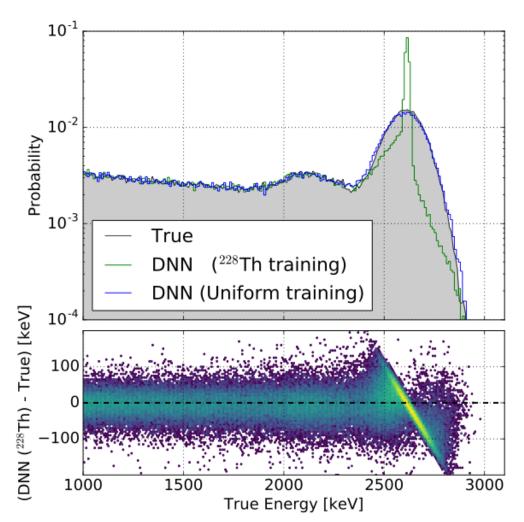
$$C = \frac{1}{3m} \sum_{t=1}^{m} \sum_{k=1}^{3} \left(y_t^k - \hat{y}_t^k \right)$$

 Training is done on real calibration data with uniform distribution in space and energy

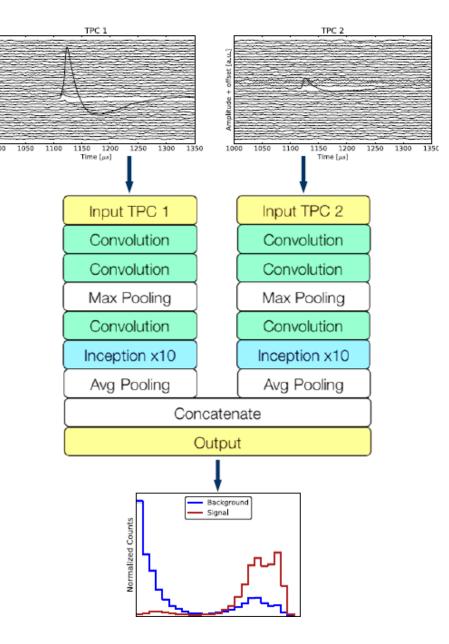


Pitfalls of DNNs

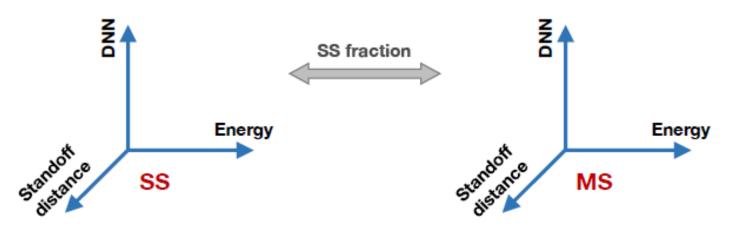
- One of potential dangers of DNN is that they learn to reproduce the training data well, but perform poorly on real data
- We, in fact, experienced this in EXO-200 and learned to mitigate it in our case:
 - Using training events with uniform energy distribution proved crucial
 - Otherwise DNN over-trains on sharp MC training peaks and shuffles independent validation events towards sharp peaks from training



- Binary discriminator for $\beta\beta$ vs γ events
- Training data is identical to energy DNN
 - 50% $\beta\beta$ signal, 50% γ background
- MC event distributions uniform
 in detector volume
 - Topological discrimination only
 - No assumption on spatial distributions
- MC event distribution uniform in energy
 - validation on $2\nu\beta\beta$ data possible
- DNN architecture inspired by the Inception architecture
- Shared weights in TPC braches



- Blinded analysis performed
- SS/MS classification
- 3-dimension fit in both SS and MS events: Energy + DNN (topology) + Standoff distance (spatial)
 - Make the most use of multi-parameters for background rejection
 - SS, MS relative contributions constrained by SS fraction
 - Fit Phase-1 and Phase-2 separately
- Improvement of ~25% in 0νββ half-life sensitivity compared to using energy spectra + SS/MS alone



- Energy spectra: SS (left) and MS (bottom right)
- DNN spectra: SS/MS (top right) of projected for ROI events

