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EXO-200

 Double-sided with shared cathode
* One side shown
-8 kV (-12 kV) on cathode in Phase | (ll)

* Single phase liquid xenon
* Enriched to 80.6% in 13%Xe
e ~175 kg in liquid phase
* ~90 kg fiducial mass

e Retired in December 2018
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EXO-200

* Each side detects both charge and light Anode
. . I ! |.- ‘ N 1
* 38x2 U-wire channels for charge collection ! applicd ! HEAE !
« 800 e- noise per wire | el | | :
* 38x2 V-wire channels for charge induction | E | Hontking
' , ' . o parficle
 Crossed at 60° with U-wires | = L_-._;_-,E:é:—ﬂ ,l ;
: : (T KerXet Tt :
* 74x2 APD channels for light | N | |
* Each channel is a chain of 7 LAAPDs L | | :
F :
* Cathode is mostly transparent (mesh) D as ? |
* Cylindrical Teflon reflector scintillation ' ! !
Cathode
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EXO-200 data
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Example multiple-scatter y event in EXO-200:
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EXO analysis in broad strokes: reconstruction

Signal extraction
(time, amplitude, rise time ...) Calibration

‘Fit to WF template Clustering

* Multiple algorithmic steps
* Done by different people over the course of several years
* Imperfections in each step can add systematics
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EXO analysis in broad strokes: point/interval estimation
% GOF
% NLL H Minuit \F%/Best Tovelics

%/I nterval/ Limits\

 MC based PDFs, binned extended NLL with systematics constraints
* Profile likelihood for interval construction
e Systematics due to recon and MC errors. Measured or estimated using calibration data
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Deep Neural Networks (DNN) in broad strokes

* DNN contains many tunable (trainable) parameters

* Training is done by minimizing discrepancy between truth and

network’s output
* E.g., RMS deviation between known and predicted energy

* Minimization is done, essentially, by gradient descent (like MIGRAD),
but with some new tricks to efficiently handle multitude of

parameters
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Deep Neural Networks in EXO

* Can circumvent intermediate steps and extract high level information
directly from raw waveforms?
* YES

* Can validate results on real detector data, not just MC?
* YES

* Even then, if using MC truth during training, would be limited by how well
MC models data (as some standard analysis steps are). Can reduce reliance

on MC?
* YES (Sometimes)

* JINST 13 P08023 (2018), https://iopscience.iop.org/article/10.1088/1748-0221/13/08/P08023
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https://iopscience.iop.org/article/10.1088/1748-0221/13/08/P08023

First application: Charge energy reconstruction

e Reconstruction works on MC over the energy
range under study

* Resolution (o) at the 29Tl full absorption peak
(2615 keV):
« DNN: 1.21% (SS: 0.73%)
* EXO Recon: 1.35% (SS: 0.93%)

* Network outperforms in disentangling mixed
induction and collection signals (see valley
before 2%T| peak, right in Ov[33 ROI)

* Applied to data and anti-corrleated with
scintillation (EXO recon‘d), the DNN based
,rotated” resolution outperforms EXO by 2-6%
(depending on the week)
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First application: A note on the “Black box”

* The better performance of the DNN
alerted that something was lacking in
the “traditional” approach and triggered
improvements in EXO recon

* While the cause is now largely
understood (handling of mixed
induction and collection signals), the
developed “traditional” solution is still
outperformed by the DNN
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Second application: Signal/Background Discrimination

* A compromise approach (to make it by
externally constrained timeline of the final

EXO-200 paper)
* Binary (B vs y) DNN based discriminator as an
additional variable to the “traditional” ML fit

* DNN trained on waveforms re-generated from
EXO recon’d signals (not on raw waveforms)
* DNN outperforms previously used BDT
discriminator
* Overall 25% sensitivity improvement,
compared to non-ML based analysis

* Phys. Rev. Lett. 123, 2019, 161802
e Kudos to grad. students who make this happen

o o o
™ o o)

Signal Efficiency

o
N

= BDT (70 %)
- [DNN-Recon (75 %)
=  [DNN-Raw (78 %)

(Tobias Ziegler&Mike Jewel most of all)
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Second application: Signal/Background Discrimination

Al Signal
* B3 events are more localized than y . — All Background
u 107 DNN-Raw=>0.34
* DNN efficiency demonstrates S DNN-Raw<0.34
correlation with the true event size in 314 -
the MC %
* Indicates that the DNN picks up correct 510-3-

features of the waveform when
reconstructing events 10-41

* Data/MC agreement of the “DNN

: . . N Zog
variable” validated with real calibration 3
HEl DNN-Raw
data 50 DNN-Recon
* Agreement not perfect, but comparableto &o.2

other “shape” errors.
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Where all this might be going + Current Challenges

e Can we throw away most of the traditional analysis infrastructure and
go from ~waveforms directly to physics result?

* Requires only MC and existing widely used DL software frameworks

* We know that we can go from waveforms directly to high level
features (Energy, Position, etc.)

* The open question is what to do with event classification? How to get
from waveforms to the Final Physics Result?
e Currently used EXO-200 solution is a half-measure
* Need a rigorous treatment of statistical and systematic errors of a DNN
* More on this in Mo’s talk
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+ Current Challenges

* The “black box” critique remains a hard challenge

* Doing what we can — validating on data whenever possible, trying to correlate
chosen events with salient properties

 Since we need waveforms, scaling to next generation may become an
Issue

* In EXO-200, 0.5M training events take up 0.25 TB full (ROOT), but this gets
cropped down to 25 GB when cropped and pre-selected (hdf5)
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Summary

* EXO-200 has demonstrated the potential of deep neural networks for the data
analysis of a Onu experiment directly from raw data
* Improved energy resolution compared to standard approach
* Improved sensitivity to neutrinoless double beta decay
* Reconstructed position using scintillation light without using Monte Carlo
* Validated on real detector data

* DNNs can potentially revolutionize the way we do analysis, completelyor
significantly reducing the need for dedicated experiment- or even field-specific
software frameworks

* The advantage is less overhead for doing physics

* Before this can happen, need to better understand statistical and systematic
properties of DNN based discriminators



Backup slides
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First application: charge energy reconstruction

* The main challenges of charge reconstruction are noise and
disentangling U-wire signal into induction and collection

10' F

PSD [e-/V Hz]

—— Collection
— Induction

Amplitude [a.u.]
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Normalized counts

First application: charge energy reconstruction

e Starting with single wire
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First application: charge energy reconstruction

* Now full events —all 76 U-wire waveforms (1024 time samples)

* Minimal Preprocessing: correct channel gains + crop waveforms

Amplitude + offset [a.u.]

2000
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First application: charge energy reconstruction

* Input waveform image
e Convolutional part extracts features from image
* Dense part extracts target variable(s) from features

Feature maps

Input C1 c2 C3 C4 C5 C6 F1
1024x76 16@256x38 32@64x19 64@32x10 128@16x5 256@8x3 256@4x2 32
- QE m
[ [T C
=L N
Conv. (5x3) Conwv. (5x3) Conv. (3x3) Conv. (3x3) Conv. (3x3) Conv. (3x3) Full
Subs. (4x2) Subs. (4x2) Subs. (2x2) Subs. (2x2) Subs. (2x2) Subs. (2x2) Connection
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First application: charge energy reconstruction

e Works on real calibration events over the
energy range under study

* Residuals w/o energy dependent features 10
* Resolution (o) at the 2%8T| full absorption
peak when combining with light channel )
from EXO Recon: s
o 1073

« DNN: 1.65% (SS: 1.50%)

e EXO Recon: 1.70% (SS: 1.61%) 5 5
* Fewer events in the dip means less Th || — DNN ,,; |
background in ROI 17H — EXORecon |~ P dl """"""
1000 1500 2000 2500 3000

Energy [keV]
228 spectra, SS-only events
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First application: charge energy reconstruction

7

—— DNN (Th228) '|'I
* It’s not only about reconstruction — better b, oM
induction disentangling and slightly better > '962,47
rotated resolution already make a =N ’4%
guantifiable improvement to physics goals 5, >
* Projected ~26% reduction of 23?Th > |
background in Phase | and ~18% mé}hase Il 1 %
compared to standard recon ‘/4,, .
* ~15% and ~11%, respectively, considering "4’;, > 1
induction effect alone zZ5
* Using 1/+/B scaling, this suggests ~9% sensitivity 5L W_L\‘L
improvement for Phase | and ~5% for Phase Il S -1 ]

2250 2300 2350 2400 2450 2500 2550 2600
Energy [keV]

Contribution of 232Th background to ROl when
using DNN and (last published) EXO recon
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Second application: light position reconstruction

* Event position reconstruction from scintillation light
* Truth label provided by ionization information of real data
* Input are all 74 raw APD real data waveforms cropped to 350 us
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Second application: light position reconstruction

* Loss function reaches 200 mm? after training the DNN for 200 epochs

* The corresponding resolution in 3D is 25 mm

 The model is tested on different types of source data at different locations

* No light position reconstruction in standard analysis, so no comparison so far

Accuracy: 22.5mm (dx = 13.6mm, dy = 11.3mm, d; = 8.1mm) corresponding to R?> = 0.99

2500 900 Qoo
- Lrur:‘j. d BU'D ) ﬁﬁn i
: redicte
g 20001 g 700 - 700 A
g 00 600 -
1500
— 500 500 -
S
uy 400 400 -
@ 1000
b 300 4 300
=
T 200 200 1
100 1 100
2 0 . 0 - 0
=% 50 50 50
@ 0- 0- 0
2
-ﬁ _EG = L L. T —ED T L T _ED T T T T T
E =200 =100 1] 100 200 =200 =100 0 100 200 =200 =100 1] 100 200
x [mm] y [mm] z [mm]

Oct 2019 Igor Ostrovskiy - DANCE Workshop, Rice U. 24



Second application: light position reconstruction

* Loss function reaches 200 mm? after training the DNN for 200 epochs

* The corresponding resolution in 3D is 25 mm

 The model is tested on different types of source data at different locations

* No light position reconstruction in standard analysis, so no comparison so far

Accuracy: 22.5mm (dx = 13.6mm, dy = 11.3mm, d; = 8.1mm) corresponding to R?> = 0.99
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Charge reconstruction training details

* Training data:
e Simulated events
* Gamma ray source S S S
* Detector response uniform in energy

* Training:
e 720 000 training events
e 100 epochs

* Technical details:

Adam optimizer

Minimize mean square error
L2 regularization Training time [epoch]
RelLU activation

Uniform Glorot initialization

— Training set
— Validation set |

|—I
o
I

Loss [keV?]

Igor Ostrovskiy - DANCE Workshop, Rice U. 26



Light reconstruction details

* Waveform image is fed to CNN consisting of 4 convolutional and 3 fully connected layers
e Qutput has three units corresponding to event x-, y-, z-coordinates

* Loss function is Euclidean loss with L2 regularization

-}

L=C+A-R where C:iZi(w, — ¥

3m =1 k=1

* Training is done on real calibration data
with uniform distribution in space and
energy

-lu-ll-;'rl-:r' I
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Pitfalls of DNNSs

1071

* One of potential dangers of DNN is that they learn

to reproduce the training data well, but perform 102/
poorly on real data % ; ,

[ —
o
-L'u

* We, in fact, experienced this in EXO-200 and T True

learned to mitigate it in our case: — DNN (2Th training)
—— DNN (Uniform training)

* Using training events with uniform energy

distribution proved crucial

e Otherwise DNN over-trains on sharp MC training
peaks and shuffles independent validation events

1000 1500 2000 2500 3000
True Energy [keV]

towards sharp peaks from training

(DNN (***Th) - True) [keV]

Oct 2019 Igor Ostrovskiy - DANCE Workshop, Rice U. 28



Oct 2019

Binary discriminator for B vs y events
Training data is identical to energy DNN

e 50% Bp signal, 50% y background
MC event distributions uniform
in detector volume

e Topological discrimination only

¢ No assumption on spatial distributions
MC event distribution uniform in energy

e validation on 2vpf data possible

DNN architecture inspired by
the Inception architecture

Shared weights in TPC braches

Amalitede + offset [a w]
T

1000 1050 1100 1130 1200 1350 1300 1350 1400 1050 1100 1150 1300 1350 1300 1350

Tirma [a] l l Therss [pan]

-

Input TPC 1 } [ Input TPC 2 J
Convolution J Convolution 1
Convolution ] | Convolution
Max Pooling J [ Max Pooling }
Convolution J ' Convolution
| Inception x10 } Inception x10 |
[ Avg Pooling } [ Avg Poaling
. Concatenate
Qutput ]
)

Normalized Counts
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e Blinded analysis performed
e 55/MS classification
e 3-dimension fit in both S5 and MS events:
Energy + DNN (topology) + Standoff distance (spatial)
« Make the most use of multi-parameters for background rejection
« 55, MS relative contributions constrained by SS fraction
+ Fit Phase-1 and Phase-2 separately
e Improvement of ~25% in 0vpR half-life sensitivity
compared to using energy spectra + SS5/MS alone

Energy

ZA _ ZA
(=] SS fraction o
< >
Energy
& = &
&aif ss &féﬁ MS
& &
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Counts/bin

Resid.

Oct 2019

e Energy spectra: SS (left) and MS (bottom right)
e DNN spectra: SS/MS (top right) of projected for ROl events
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