
Deep learning for LHC classification, 
regression, generation, and beyond

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.
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Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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…today I will mostly talk about the “beyond” (anomaly 
detection), but I am happy to discuss other topics afterward.

http://cern.ch/bnachman
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L2 weight matrix norm. A
down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

Representing detectors as images

5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

Generative Adversarial Networks to accelerate simulation
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Figure 1: An illustration of the PUMML framework. The input is a three-channel image:

blue/purple represents charged radiation from the leading vertex, green is charged pileup

radiation, and yellow/orange/red is the total neutral radiation. The resolution of the charged

images is higher than for the neutral one. These images are fed into a convolutional layer with

several filters whose value at each pixel is a function of a patch around that pixel location in

the input images. The output is an image combining the pixels of each filter to one output

pixel.

– 5 –

Convolutional 
Neural Networks for 

Noise Mitigation
[PRL 120 (2018) 042003 and papers that cite it]

[JHEP 07 (2016) 069 and papers that cite it]
[JHEP 12 (2017) 51 and others]

Many places where these are 
already part of collaboration 

workflows … many other places 
where this is still active work!
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and

– 15 –

no signal

Nobel Prize

set limits

- Uncertainties in a NN-based analysis 

- Searches at the LHC 

- Learning without labels 

- Model agnostic searches 

- The future
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“But what are the uncertainties on the NN”?
- question asked by every review board
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“But what are the uncertainties on the NN”?
- question asked by every review board

(snippets from yesterday’s slides)
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�9High-dimensional Uncertainty

One word of caution: current paradigm for uncertainties 
may be too naive for hypervariate analysis! 

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

(truly end-to-end)
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can make big changes in 

NN output while 
preserving “control 

region” performance.

e.g. for some uncertainties, we often compare two 
different models - one nuisance parameter.

Some observable we want to validate
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�12How to get around this?

Work hard to understand the true nuisance 
parameters in the hypervariate parameter space.

Don’t use simulation!
(focus for the rest of the talk 
though not always possible!)
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�13Searching for new particles / forces
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Another approach is to remain signal model 
agnostic and simply compare the data with 

our simulation of the Standard Model.
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The question then becomes: 
  

how to train a classifier directly on data, 
without a particular signal model in mind?



�18What is the problem?

Why can’t I just pay some physicists to label events  
and then train a neural network using those labels?

Answer: this is not cats-versus-dogs … thanks to quantum 
mechanics it is not possible to know what happened.

Image credit: pixabay.com

http://pixabay.com


�19What is the problem?

The data are unlabeled and in the best case, come to us  
as mixtures of two classes (“signal” and “background”).
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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The data are unlabeled and in the best case, come to us  
as mixtures of two classes (“signal” and “background”).
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.
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defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f
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> f
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, since
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+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Can we do without any label info?
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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=
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=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since
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)/(f
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LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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=
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=
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f
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since
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LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)
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, since
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+ 1)2 > 0. If f
1
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2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have
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Solution: Train directly on data 
using mixed samples
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In practice, it also 
seems to work well, 
often approaching 
the case with 100% 

label information 
(fully supervised)



�25What if we know even less?

There are many uses for CWoLa when you know the two 
classes.  What if you don’t - can we use CWoLa to hunt 

for new particles without a signal model in mind?
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*Image from The Courier Mail.  Koala is actually being freed - I do not condone violence against these animals!

What if we know even less?

Yes! 
…CWoLa hunting

[J. Collins, K. Howe, BPN
PRL 121 (2018) 241803]

[J. Collins, K. Howe, BPN
PRD 99 (2019) 014038]

There are many uses for CWoLa when you know the two 
classes.  What if you don’t - can we use CWoLa to hunt 

for new particles without a signal model in mind?



�27CWoLa Hunting for new particles

mres

dN
/d

m
re

s
background

Assumption: there is a feature that we know about where the 
background is smooth and the signal (if it exists) is localized.
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mres

dN
/d

m
re

s

signal

background

Assumption: there is a feature that we know about where the 
background is smooth and the signal (if it exists) is localized.

CWoLa Hunting for new particles
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mres

dN
/d
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re

s

signal m
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ed
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e 
1

mixed sample 2

background

We don’t know where the signal is, but for a given 
hypothesis, we can make signal windows and sidebands.

CWoLa Hunting for new particles
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dN
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signal m
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ed
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pl
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mixed sample 2

background

y
will be a NN

Other features 
can then be used 
to train CWoLa.

Requirement: y is (nearly) 
independent of mres.

N.B. it is okay that 
there is some signal 
in the sidebands!

CWoLa Hunting for new particles
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?2

?3

Example: two-jet search

jet 1

jet 2

y = many features of the two jets

mres = mass of 
two-jet system
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�50…and when there is a signal?
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�51What is the network learning?

Learns to find the signal !
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Deep learning has a great 
potential to enhance, 

accelerate, and 
empower HEP analyses.

Outlook
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and

– 15 –

Uninteresting

Nobel Prize

Today, I have told you about an 
application for anomaly 

detection at the LHC.  I would 
love to hear your thoughts on the 
applicability to DM/Neutrinos!!
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Naively, pay a 
huge penalty 

because y can be 
high-dimensional.
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�54Overtraining & Look Elsewhere Effect*

Solution: (nested) cross-training

i.e. you will sculpt 
lots of bumps!

*you may know this as the 
multiple comparisons problem
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(1) Divide the entire dataset into k-folds.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of

– 13 –
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(2) Train CWoLa classifiers.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of

– 13 –

�56Nested cross-training

mres

Train signal versus 
sideband k-1 times

rotating the validation set

 In practice, also train many 
networks with a different 
initialization and take the 
best one per k-1 rotation.



(2) Train CWoLa classifiers.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of

– 13 –
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The Ensemble Model 
is just the average of 

the four networks.

Data fluctuations will 
cancel destructively 

while signal interferes 
constructively.



(3) Apply classifiers to holdout test sets and sum.
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Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of
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�59CWoLa hunting vs. Full Supervision
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Figure 11. Truth-label ROC curves for taggers trained using CWoLa with varying number of signal
events, compared to those for a dedicated tagger trained on pure signal and background samples
(dashed black) and one trained to discriminate W and Z jets from QCD (dot-dashed black). The
CWoLa examples have B = 81341 in the signal region and S = (230, 352, 472, 697, 927).

the cuts. This illustrates that CWoLa hunting may find unexpected signals which are not

targeted by existing dedicated searches.

One final remark is about how one would use CWoLa hunting to set limits. In the form

described above, the CWoLa hunting approach is designed to find new signals in data without

any model assumptions. However, it is also possible to recast the lack of an excess as setting

limits on particular BSM models. Given a simulated sample for a particular model, it would

be possible to set limits on this model by mixing the simulation with the data and training

a series of classifiers as above and running toy experiments, re-estimating the background

each time. This is similar to the usual bump hunt, except that there is more computational

overhead because the background distribution is determined in part by the neural networks,

and the distribution in expected signal e�ciencies cannot be determined except by these toy

experiments.

5 Conclusions

We have presented a new anomaly detection technique for finding BSM physics signals directly

from data. The central assumption is that the signal is localized as a bump in one variable in

which the background is smooth, and that other features are available for additional discrim-

ination power. This allows us to identify potential signal-enhanced and signal-depleted event

samples with almost identical background characteristics on which a classifier can be trained

using the Classification Without Labels approach. In the case that a distinctive signal is

present, the trained classifier output becomes an e↵ective discriminant between signal events

– 18 –

be
tte

r

Fully supervised, 
wrong model Fully supervised, 

correct model

S = signal, B = background

1 
/ b

ac
kg

ro
un

d 
ef

fic
ie

nc
y

If you know what you are looking for, you should look for it.  If 
you don’t know, then CWoLa hunting may be able to catch it!
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