Deep learning for LHC classification, regression, generation, and beyond

Benjamin Nachman

Lawrence Berkeley National Laboratory cern.ch/bnachman @bpnachman Q bnachman bpnachman@lbl.gov

BERKELEY EXPERIMENTAL PARTICLE

DANCE 2019
October 29, 2019

Deep learning for LHC classification, regression, generation, and beyond

...today I will mostly talk about the "beyond" (anomaly detection), but I am happy to discuss other topics afterward.

full supervision / weak supervision

Classification

Generation

Regression
map noise
to structure

Representing detectors as images
[PRL 120 (2018) 042003 and papers that cite it]

Generative Adversarial Networks to accelerate simulation

Outline for today

- Uncertainties in a NN-based analysis
- Searches at the LHC
- Learning without labels
- Model agnostic searches
- The future

Uncertainties

"But what are the uncertainties on the NN"?

- question asked by every review board

Uncertainties

"But what are the uncertainties on the NN"?

- question asked by every review board
- Before this can happen, need to better understand statistical and systematic properties of DNN based discriminators

3. Absence of rigorous treatment of statistical/systematic errors
(snippets from yesterday's slides)

Uncertainties for a NN-based analysis

Precision / Optimality: NN $(\mathrm{x}) \neq \frac{p_{\text {true }}(x \mid \mathrm{S}+\mathrm{B})}{p_{\text {true }}(x \mid \mathrm{B})}$
limited training statistics

Statistical uncertainty
limited prediction statistics

$$
p_{\text {train }}(x) \neq p_{\text {true }}(x)
$$

inaccurate training data $\left.\mathrm{NN}(\mathrm{x})\right|_{p_{\text {true }}=p_{\text {train }}} \neq \frac{p_{\text {true }}(x \mid \mathrm{S}+\mathrm{B})}{p_{\text {true }}(x \mid \mathrm{B})}$ model/optimization flexibility

Systematic uncertainty
$p_{\text {prediction }}(x) \neq p_{\text {true }}(x)$
inaccurate prediction data

Accuracy / Bias: $p_{\text {prediction }}(\mathrm{NN}) \neq p_{\text {true }}(\mathrm{NN})$

High-dimensional Uncertainty

One word of caution: current paradigm for uncertainties may be too naive for hypervariate analysis! (truly end-to-end)
e.g. for some uncertainties, we often compare two different models - one nuisance parameter.

High-dimensional Uncertainty

One word of caution: current paradigm for uncertainties may be too naive for hypervariate analysis!
e.g. for some uncertainties, we often compare two different models - one nuisance parameter.

Borrowing ideas from AI safety, one can show that small perturbations can make big changes in

NN output while preserving "control region" performance.

High-dimensional Uncertainty

One word of caution: current paradigm for uncertainties may be too naive for hypervariate analysis!
e.g. for some uncertainties, we often compare two different models - one nuisance parameter.

Borrowing ideas from Al safety, one can show that small perturbations can make big changes in

NN output while preserving "control region" performance.

How to get around this?

Work hard to understand the true nuisance parameters in the hypervariate parameter space.

Don't use simulation! (focus for the rest of the talk though not always possible!)

Searching for new particles / forces

Searching for new particles / forces

Searching for new particles / forces

Searching for new particles / forces

Searching for new particles / forces

What is the problem?

Why can't I just pay some physicists to label events and then train a neural network using those labels?

Image credit: pixabay.com
Answer: this is not cats-versus-dogs ... thanks to quantum mechanics it is not possible to know what happened.

What is the problem?

The data are unlabeled and in the best case, come to us as mixtures of two classes ("signal" and "background").

Mixed Sample 1

Mixed Sample 2

(B)(B)(B)(3) (B)
 (B)(B)(B)(8)
 (3)(B)(B)(B)(8)
 (B)(B)(B)(B)
 (3)(B)(B)(B)

(we don't get to observe the color of the circles)

What is the problem?

The data are unlabeled and in the best case, come to us as mixtures of two classes ("signal" and "background").

Can we do without any label info?

(we don't get to observe the color of the circles)

Classification Without Labels

Yes!

[Komiske, Metodiev, BPN, Schwartz, PRD 98 (2018) 011502] [Cohen, Freytsis, Ostdiek, JHEP 02 (2018) 034] [Metodiev, BPN, Thaler, JHEP 10 (2017) 51] [Dery, BPN, Rubbo, Schwartzman, JHEP 05 (2017) 145]

Classification Without Labels

Mixed Sample 1

Mixed Sample 2

Yes!

[Komiske, Metodiev, BPN, Schwartz, PRD 98 (2018) 011502] [Cohen, Freytsis, Ostdiek, JHEP 02 (2018) 034] [Metodiev, BPN, Thaler, JHEP 10 (2017) 51] [Dery, BPN, Rubbo, Schwartzman, JHEP 05 (2017) 145]

Classification Without Labels

Mixed Sample 1

Mixed Sample 2

Yes!

One can show that this procedure asymptotically converges to the optimal classifier (with labels).
[Komiske, Metodiev, BPN, Schwartz, PRD 98 (2018) 011502]
[Cohen, Freytsis, Ostdiek, JHEP 02 (2018) 034]
[Metodiev, BPN, Thaler, JHEP 10 (2017) 51]
[Dery, BPN, Rubbo, Schwartzman, JHEP 05 (2017) 145]

Classification Without Labels

In practice, it also seems to work well, often approaching the case with 100\% label information (fully supervised)

What if we know even less?

There are many uses for CWoLa when you know the two classes. What if you don't - can we use CWoLa to hunt for new particles without a signal model in mind?

What if we know even less?

There are many uses for CWoLa when you know the two classes. What if you don't - can we use CWoLa to hunt for new particles without a signal model in mind?

Yes!
 ...CWoLa hunting

[J. Collins, K. Howe, BPN
PRL 121 (2018) 241803]
[J. Collins, K. Howe, BPN PRD 99 (2019) 014038]

CWoLa Hunting for new particles

Assumption: there is a feature that we know about where the background is smooth and the signal (if it exists) is localized.

CWoLa Hunting for new particles

Assumption: there is a feature that we know about where the background is smooth and the signal (if it exists) is localized.

CWoLa Hunting for new particles

We don't know where the signal is, but for a given hypothesis, we can make signal windows and sidebands.

CWoLa Hunting for new particles

mixed sample 2
Other features can then be used to train CWoLa.

Example: two-jet search

$y=$ many features of the two jets

Example: two-jet search

- most 10% signal-region-like most 0.2% signal-region-like

Example: two-jet search

-_ most 10% signal-region-like
most 1% signal-region-like
$m_{\lrcorner \jmath}[\mathrm{GeV}]$ most 0.2% signal-region-like

Example: two-jet search

—— most 10% signal-region-like
most 1% signal-region-like
$m_{\jmath \jmath}[\mathrm{GeV}]$

Example: two-jet search

Example: two-jet search

Example: two-jet search

—— most 10% signal-region-like
most 1% signal-region-like
$m_{\jmath \jmath}[\mathrm{GeV}]$

Example: two-jet search

-_ most 10% signal-region-like
most 1% signal-region-like
$m_{\jmath \jmath}[\mathrm{GeV}]$

Example: two-jet search

Example: two-jet search

—— most 10% signal-region-like
most 1 \% signal-region-like
$m_{\jmath \jmath}[\mathrm{GeV}]$

...and when there is a signal?

sidebands
standard parametric fit to background.

- most 1% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

-_ most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

_- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

_- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

_- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

- most 10% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

_- most 10% signal-region-like most 0.2% signal-region-like

What is the network learning?

Outlook

Deep learning has a great potential to enhance, accelerate, and empower HEP analyses.

Today, I have told you about an application for anomaly detection at the LHC. I would love to hear your thoughts on the applicability to DM/Neutrinos!!

Backup

Overtraining \& Look Elsewhere Effect*

Naively, pay a huge penalty because y can be high-dimensional.
i.e. you will sculpt lots of bumps!

Solution: (nested) cross-training
*you may know this as the multiple comparisons problem

Nested cross-training

(1) Divide the entire dataset into k-folds.

Data Partitioning

Nested cross-training

(2) Train CWoLa classifiers.

Data Partitioning
Classifier Training

Train signal versus sideband k -1 times

In practice, also train many networks with a different initialization and take the best one per k-1 rotation.

Nested cross-training

(2) Train CWoLa classifiers.

Data Partitioning
Classifier Training

Nested cross-training

(3) Apply classifiers to holdout test sets and sum.

CWoLa hunting vs. Full Supervision

If you know what you are looking for, you should look for it. If you don't know, then CWoLa hunting may be able to catch it!

LHC Olympics 2020

Overview
Timetable
Participant List
LHCOlympics2020
Slack channel

LHCOlympics2020

Despite an impressive and extensive effort by the LHC collaborations, there is currently no convincing evidence for new particles produced in high-energy collisions. At the same time, there has been a growing interest in machine learning techniques to enhance potential signals using all of the available information.

In the spirit of the first LHC Olympics (circa 2005-2006) [1 $\left.{ }^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}\right]$, we are organizing the 2020 LHC Olympics. Our goal is to ensure that the LHC search program is sufficiently well-rounded to capture "all' rare and complex signals. The final state for this olympics will be focused (generic dijet events) but the observable phase space and potential BSM parameter space(s) are large: all hadrons in the event can be used for learning (be it "cuts", supervised machine learning, or unsupervised machine learning).

For setting up, developing, and validating your methods, we provide background events and a few benchmark signal models. You can download these from [ZENODO LINK]. To help get you started, we have also prepared simple python scripts to read in the data and do some basic processing.

The final test will happen 2 weeks before the ML4Jets2020 workshop. We will release new datasets where the "background" will be similar to but not identical to the one in the development set (as is true in real data!). Each of these datasets will have signal injected somewhere and it is up to you to see if you can find (a) find a signal (b) what is the mass, and (c) what is the cross section. To keep the scope limited, all signals will be of the form $\mathrm{X} \rightarrow$ hadrons, where X is a new massive particle with an $\mathrm{O}(\mathrm{TeV})$ mass. The events require at least one $\mathrm{R}=1.0 \mathrm{jet}$ with $\mathrm{p}_{\mathrm{T}}>1 \mathrm{TeV}$. For each event, we provide a list of all hadrons (p_{T}, eta, phi, p_{T}, eta, phi, ...) zero-padded up to 600 hadrons.
We strongly encourage you to publish your original research methods using these datasets (before or after) the unvelling of the results. Anyone who participates will be part of a summary paper to be prepared following the workshop.

Please do not hesitate to ask questions: we will use the ML4Jets slack channel to discuss technical questions related to this challenge.

Good luck!
Gregor Kasieczka, Ben Nachman, and David Shih

