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Introduction

* Machine learning (ML) algorithms are playing an increasingly
important role in analysis of particle physics experiments

* Deep learning methods starting to outperform conventional
approaches in Energy/Position reconstruction, Signal/Bkgrnd
discrimination

* Analyses using ML already exist but mostly play a small role within the
traditional analysis (exo-200 PRL paper arXiv:1906.02723), interest in
having end-to-end ML analysis.



* Despite its improved performance some skepticism remains in parts

of the nuclear and particle physics communities due to :

1. Lack oninterpretability (“Black Box”)
2. Scarce evidence of performance on real detector data
3. Absence of rigorous treatment of statistical/systematic errors

* We aim to address the third point in the context of discriminators for
rare event searches

* For a typical discriminator between a number of different classes
(event types), an “event” is passed to the algorithm with set of
features, and the algorithm predicts which class it belongs to
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* We can represent this in the following way
M
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* Matrix P represents the true action of the algorithm on the vector X
containing the true number of events of each type, to give the predicted

—
number of events in each class X¢

» For simplification, use the confusion matrix B (average performance) to
represent the algorithm, averages
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- Vector X (unknown) is the true number of events of each type
occurring in the detector for a particular run with the true event
numbers following a multinomial
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* N total events, M event types, we're interested in estimating the true
probabilities of events occurring p;

* Transform the previous distribution to find the pdf of classified events
in each type (known) as a function of the p;’s
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* For rare event searches, data usually segmented into independent
measurements, “runs”.

* Given a single run: X¢ = x¢, the Likelihood function is
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* The log likelihood is
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* Extremizing this log likelihood using Lagrange multipliers, the true
probabilities of events can be estimated analytically

1 M
= 3B g

j=1
 This is incorrect, because cannot assume average confusion matrix
* We can assume the matrix elements follow a Gaussian distribution

Correctly Classified MC 2*2Th

= Gaussian

u=0.492406
o=0.0022
o, =0.000032
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(from https://curve.carleton.ca/03c9a2b2-d4ae-443c-9bd8-7d5080c89fcd)
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* So to find the distribution of the classified events Xi" = ZRJXJ' , 2 types
of convolution must be performed =

 (From Statistical Data Analysis, Cowan)For multiplication of variables:
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e For addition of variables:

flz) = [Zg(x)h(z——:c)d:r

z=z+Yy

= ]_oo 9(z — y)h(y)dy.

* For P;; Gaussian, X; multinomial, weren’t able to solve analytically



* We turn instead to a numerical solution

* The log likelihood incorporates the confusion matrix elements, so we
can account for statistical variation in algorithm performance by
pulling the matrix elements randomly from a Gaussian distribution

 Systematic errors, found by comparing confusion matrix to calibration
data, can then be added to randomly pulled matrix elements

* The log likelihood can then be extremized numerically to find the
estimates



* The software algorithm implemented in Python (using Scipy for
minimization with constraints and bounds), minimizes —ve log
likelihood to find best estimates of p;’s

* Constraints on p;’s:

m _
0 < ptrue,i <1 ’ i=1 ptrue,i =1

* Ensure normalization and bounds are respected in the minimizer
output, and outputs are unique
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likelihood ratio (and
ordering principle,
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Conclusion

* Goal is to get direct physics results from low level information
* We treated the problem analytically for the simplified case

* We developed a software package to find estimates and build
confidence intervals

* This takes us closer to an end-to-end ML analysis

* We have a paper in preparation with more technical details



