What aren't we talking
about that we should?

Stan Seibert
2019-10-28






Who is this guy?

Did particle (astro)physics experiment until 2013

Worked on: SNO, Braidwood, SNO+, MiniCLEAN, & LBNE (before it was DUNE)

Wrote RAT (simulation / analysis framework) for Braidwood, refurbished for
MiniCLEAN, adopted by SNO+

Evangelized GPU computing starting in 2007 to anyone who would listen
Went into industry, landing shortly at Continuum Analytics, now called Anaconda

Currently manage the open source development team at Anaconda, where we
work on lots of Python projects

Note: Not wearing my Anaconda hat for this talk. These opinions are my own.



Format

No idea what is common knowledge in the field after 6 years
Going to throw out some "hot takes" that | mostly believe &

Hopefully will spark some ideas or interesting conversation

Apologies if these points are obvious



ldea #1: Docker might be
overrated

® Docker is amazing for creating well-defined Linux compute environments

® Huge advance over previous status quo to see more reproducible science and
production data processing done with Docker

e But...

® Docker was designed for microservices where composition happens at the
network layer

® Poor abstraction for HPC
¢ How do you combine container A and container B? Swizzle Docker files!?
® Docker can be used to hide / excuse poor packaging and portability practices

® Docker has a crazy security model that is incompatible with traditional multi-user
systems

® Keep looking for better ways to do this! Check out other container options, like Singularity,
and don't give up on user-space packaging as complementary capability to containers.



ldea #2:Accelerated Computing

is Going to Fragment, Hard

® The multicore x86-64 monoculture died years ago, but it is taking time for that shockwave
to propagate outward:

CUDA was the first viable fragment, and we still haven't figured out how to fully exploit
it.

CPUs now have GPU-like hyperthreading and SIMD instructions

PPC (via POWERS8/9) is now a viable HPC contender

ARM is rapidly growing into the server space

AMD GPUs are behind the curve (ecosystem-wise), but growing

Intel is releasing a GPU in 2020

FPGA makers are taking the "numerical coprocessor" role more seriously

ML hype means everyone is trying to make a matrix coprocessor now

e OpenCL basically failed to unify all this (though it may rise again), so don't wait for that.

Don't look for a bandwagon to jump on, but be open (and prepared) to take advantage of unusual

compute platforms for DAQ and/or event processing.
Where are your bottlenecks?
How hard is it to move data in and out of your analysis frameworks?



ldea #3: Data Layouts Matter
More than Algorithms

Why aren't we able to all this novel compute hardware (or even the
AV X instructions)??

Our data has been sacrificed on the altar of C++ OOP

e Obijects full of pointers to heap allocations of objects with yet more
pointers...

e Bad for caches, bad for SIMD, and near impossible to relocate from
CPU to an accelerator with a distinct memory space

ROQT partially saves us from ourselves due to how TTree's are basket-
ed in files.

Position-independent, columnar storage is going to continue to be important
to take advantage of new technology. Apache Arrow has good ideas, and
Awkward Array is very promising.



ldea #4: Can we take ideas from
Stream Processing frameworks!?

e Data engineers in industry now have to deal with streaming data on
par with (some) running physics detectors

® |n physics, both online monitoring and offline data processing
frameworks deal in transformations and aggregations on sequences
of events

¢ Tend to be very Java-centric

® Maybe there are APl and code organization ideas to be borrowed
from projects like Apache Kafka and Flink?

S -\ §g kafka
e I—

Sensor -/ I
logs

Downstream
systems



https://www.slideshare.net/stephanewen1/apache-flink-overview-at

ldea #5: Interactive Computing at Scale
Requires Going Beyond Batch Schedulers

® Notebooks are great (for some things), and they make interactive computing
very attractive

¢ [nteractive data analysis and exploration should operate on human time scales
® |deally we want the human to wait less than O(10 sec)

e Compute may need to idle for O(seconds or minutes) for human to decide
next step

® Nominal utilization on HPC clusters will seem high (many job slots filled)
e Actual utilization will be very low (small average CPU load)

e Rapid autoscaling of compute resources will be essential

e Kubernetes heads in the right direction, but may not go far enough

® Check out what Pangeo project is doing with Dask and Kubernetes for geoscience


https://www.slideshare.net/stephanewen1/apache-flink-overview-at

ldea #6: Turn Your Simulation / Event
Processing Frameworks Inside Out

® (Here, | hope state of the art has changed since my time)

e Many frameworks | worked on were monolithic apps with their own control language
for loading events in a loop and pushing them through a sequence (sometime
branching) of event processors.

e Consider abandoning these bespoke scripting DSLs for a general language (like Python)
and make the framework a true library with reusable components

® Jobs can combine components however they like, using standard control flow

e Makes it easier for components to depend on each other (fitters that call into
geometry routines, etc)

e True DAG workflows are easier to describe with a general purpose programming
language.

e Also forces you away from relying on massive (and error-prone) hidden global state
once you don't have an "app” to manage it all.

® More Lego, less player-piano


https://www.slideshare.net/stephanewen1/apache-flink-overview-at

ldea #/: Software Testing in
Physics is Underappreciated

Software used by more than | person ([you] & [you + 3 months] are different people) needs
automated testing.

Software developers fight over unit testing vs. integration testing vs. acceptance testing which is
both useful and meaningless posturing. Don't get sucked into the taxonomy debates!

Acknowledge the utility, but be skeptical of popular testing techniques:

e Reproducible analyses: Can my colleagues get the same wrong answer this week that |
got last week? See also: "Golden files" which you must match after code changes.

e Error Correcting Graduate Students: N graduate students write their own analyses
mostly from scratch and we make them duel each other until they all agree.

* Oracle Theses: Past students document their results, and you keep fussing with your
implementation until you reproduce their summary tables or plots.

How do we make testing generation easier and less onerous for busy people?

Testing numerical code is a distinct skill that is frequently not addressed in software engineering
tutorials

When should tests be statistical vs. exact! (Fixing your RNG seed seems like a good idea, but is
really kicking your test brittleness down the road.)

Take a look at Hypothesis for interesting ideas on finding corner cases by automatically generating tests?


https://www.slideshare.net/stephanewen1/apache-flink-overview-at

