
What aren't we talking
about that we should?

Stan Seibert
2019-10-28

What aren't we talking
about that we should?

Stan Seibert
2019-10-28

What software stuff do I

hope you are talking about?

Who is this guy?
• Did particle (astro)physics experiment until 2013

• Worked on: SNO, Braidwood, SNO+, MiniCLEAN, & LBNE (before it was DUNE)

• Wrote RAT (simulation / analysis framework) for Braidwood, refurbished for
MiniCLEAN, adopted by SNO+

• Evangelized GPU computing starting in 2007 to anyone who would listen

• Went into industry, landing shortly at Continuum Analytics, now called Anaconda

• Currently manage the open source development team at Anaconda, where we
work on lots of Python projects

• Note: Not wearing my Anaconda hat for this talk. These opinions are my own.

Format

• No idea what is common knowledge in the field after 6 years

• Going to throw out some "hot takes" that I mostly believe 😁

• Hopefully will spark some ideas or interesting conversation

• Apologies if these points are obvious

Idea #1: Docker might be
overrated

• Docker is amazing for creating well-defined Linux compute environments

• Huge advance over previous status quo to see more reproducible science and
production data processing done with Docker

• But...

• Docker was designed for microservices where composition happens at the
network layer

• Poor abstraction for HPC

• How do you combine container A and container B? Swizzle Docker files?

• Docker can be used to hide / excuse poor packaging and portability practices

• Docker has a crazy security model that is incompatible with traditional multi-user
systems

• Keep looking for better ways to do this! Check out other container options, like Singularity,
and don't give up on user-space packaging as complementary capability to containers.

Idea #2: Accelerated Computing
is Going to Fragment, Hard

• The multicore x86-64 monoculture died years ago, but it is taking time for that shockwave
to propagate outward:

• CUDA was the first viable fragment, and we still haven't figured out how to fully exploit
it.

• CPUs now have GPU-like hyperthreading and SIMD instructions

• PPC (via POWER8/9) is now a viable HPC contender

• ARM is rapidly growing into the server space

• AMD GPUs are behind the curve (ecosystem-wise), but growing

• Intel is releasing a GPU in 2020

• FPGA makers are taking the "numerical coprocessor" role more seriously

• ML hype means everyone is trying to make a matrix coprocessor now

• OpenCL basically failed to unify all this (though it may rise again), so don't wait for that.

• Don't look for a bandwagon to jump on, but be open (and prepared) to take advantage of unusual
compute platforms for DAQ and/or event processing.  
Where are your bottlenecks?  
How hard is it to move data in and out of your analysis frameworks?

Idea #3: Data Layouts Matter
More than Algorithms

• Why aren't we able to all this novel compute hardware (or even the
AVX instructions)??

• Our data has been sacrificed on the altar of C++ OOP

• Objects full of pointers to heap allocations of objects with yet more
pointers...

• Bad for caches, bad for SIMD, and near impossible to relocate from
CPU to an accelerator with a distinct memory space

• ROOT partially saves us from ourselves due to how TTree's are basket-
ed in files.

• Position-independent, columnar storage is going to continue to be important
to take advantage of new technology. Apache Arrow has good ideas, and
Awkward Array is very promising.

Idea #4: Can we take ideas from
Stream Processing frameworks?
• Data engineers in industry now have to deal with streaming data on

par with (some) running physics detectors

• In physics, both online monitoring and offline data processing
frameworks deal in transformations and aggregations on sequences
of events

• Tend to be very Java-centric

• Maybe there are API and code organization ideas to be borrowed
from projects like Apache Kafka and Flink?

https://www.slideshare.net/stephanewen1/apache-flink-overview-at

https://www.slideshare.net/stephanewen1/apache-flink-overview-at

Idea #5: Interactive Computing at Scale
Requires Going Beyond Batch Schedulers

• Notebooks are great (for some things), and they make interactive computing
very attractive

• Interactive data analysis and exploration should operate on human time scales

• Ideally we want the human to wait less than O(10 sec)

• Compute may need to idle for O(seconds or minutes) for human to decide
next step

• Nominal utilization on HPC clusters will seem high (many job slots filled)

• Actual utilization will be very low (small average CPU load)

• Rapid autoscaling of compute resources will be essential

• Kubernetes heads in the right direction, but may not go far enough

• Check out what Pangeo project is doing with Dask and Kubernetes for geoscience

https://www.slideshare.net/stephanewen1/apache-flink-overview-at

Idea #6: Turn Your Simulation / Event
Processing Frameworks Inside Out

• (Here, I hope state of the art has changed since my time)

• Many frameworks I worked on were monolithic apps with their own control language
for loading events in a loop and pushing them through a sequence (sometime
branching) of event processors.

• Consider abandoning these bespoke scripting DSLs for a general language (like Python)
and make the framework a true library with reusable components

• Jobs can combine components however they like, using standard control flow

• Makes it easier for components to depend on each other (fitters that call into
geometry routines, etc)

• True DAG workflows are easier to describe with a general purpose programming
language.

• Also forces you away from relying on massive (and error-prone) hidden global state
once you don't have an "app" to manage it all.

• More Lego, less player-piano

https://www.slideshare.net/stephanewen1/apache-flink-overview-at

Idea #7: Software Testing in
Physics is Underappreciated

• Software used by more than 1 person ([you] & [you + 3 months] are different people) needs
automated testing.

• Software developers fight over unit testing vs. integration testing vs. acceptance testing which is
both useful and meaningless posturing. Don't get sucked into the taxonomy debates!

• Acknowledge the utility, but be skeptical of popular testing techniques:

• Reproducible analyses: Can my colleagues get the same wrong answer this week that I
got last week? See also: "Golden files" which you must match after code changes.

• Error Correcting Graduate Students: N graduate students write their own analyses
mostly from scratch and we make them duel each other until they all agree.

• Oracle Theses: Past students document their results, and you keep fussing with your
implementation until you reproduce their summary tables or plots.

• How do we make testing generation easier and less onerous for busy people?

• Testing numerical code is a distinct skill that is frequently not addressed in software engineering
tutorials

• When should tests be statistical vs. exact? (Fixing your RNG seed seems like a good idea, but is
really kicking your test brittleness down the road.)

• Take a look at Hypothesis for interesting ideas on finding corner cases by automatically generating tests?

https://www.slideshare.net/stephanewen1/apache-flink-overview-at

