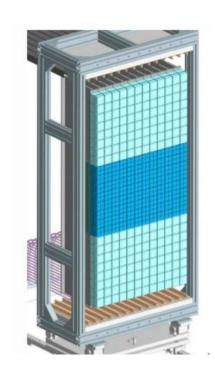

Characterization of MaPMTs for LHCb RICH Upgrade

Maria del Valle Coello

LHCb and RICH

- CP violation in b-hadrons
 - Matter-antimatter asymmetry
 - New physics
- Forward detection of B mesons
- RICH: Ring Imaging CHerenkov
 - o PID
- Upgrade: Readout rate
 - Aim for theoretical uncertainty


RICH detectors basics

Particle identification

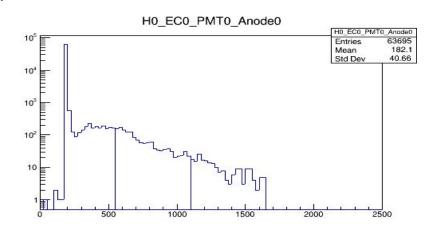
- Light cone
- Reflection
- Shape → velocity →
 speed → (reconstructed trajectory) → mass/charge → ID

RICH2

- Elementary cell → programming chip → readout board
- Elementary cells → PMT groups
- 384 H-Type, 768 R-Type
- 15-120 mrad coverage; high p

Multi-anode Photo-Multiplier Tubes (MaPMTs)

- 64 channels
- R-Type: smaller, four per EC
- H-Type: larger, one per EC



Characterization studies


- Understand the following parameters:
 - o Gain
 - Threshold
 - Optimum voltage
 - Occupancy
 - Aging
 - Uniformity
 - Cross-talk
 - Optimum S/N
 - SIN
 - Dark rate
- Every single pixel counts (!)

Ongoing work

- Fixing the FSM for data acquisition
 - Necessary for all PMTs in assembled column
 - In progress
- Developing models for SIN in PMTs
 - Cut down acquisition time by 60%
- Perform tests on full column
 - PMT grouping and layout
- Quantum efficiency measurements

Aside: Swiss-b

