

Hunting new physics through improved tests of Lepton Flavour Universality with ATLAS at HL-LHC

18/07/2019

What is lepton universality, and what are we testing? (in a nutshell)

- One of the fundamental axioms of the Standard Model
 - The lepton couplings (g_l) where $l = e, \mu, \tau$ to the vector bosons are equal

• $(g_{\mu} = g_e = g_{\tau} = g)$

- Several experiments (from LHCb, BaBar, Belle, LEP) have been made to test this assumption by measuring the ratio of branching ratios and partial widths of various decays
- The light/light lepton ratios $\left(\left|\frac{g_{\mu}}{g_{e}}\right|\right)$ are consistent with SM predictions at high and low momentum transfer, but $\left|\frac{g_{\tau}}{g_{e}}\right|$ at high momentum transfer not as much...

$$R(D^{(*)}) = \frac{BR(\bar{B} \to D^{(*)}\tau^{-}\bar{v})}{BR(\bar{B} \to D^{(*)}l^{-}\bar{v})}$$
Ex: LHCb, BaBar, Belle
found this ratio to be ~3.4-
3.8 sigma deviation from
SM prediction
What we are ultimately
trying to measure (for
now)
$$\frac{BR(W \to \tau v)}{BR(W \to \mu v)} = 1.043 \pm 0.024,$$
$$\frac{BR(W \to \tau v)}{BR(W \to \mu v)} = 1.043 \pm 0.024,$$
$$\frac{BR(W \to \tau v)}{BR(W \to \mu v)} = 1.043 \pm 0.024,$$
$$\frac{BR(W \to \tau v)}{BR(W \to \mu v)} = 1.070 \pm 0.026.$$

Measurement strategy

- At LEP, $e^-e^+ \rightarrow W^-W^+$ was used to measure the ratios of branching ratios and achieved 2.5% for electron and muon channels
 - At LHC, uncertainty on the efficiency of reconstructing hadronic τ decays is larger than 2.5%, so we use leptonic decays of τ leptons
 - \rightarrow looking at dilepton $t\bar{t}$ events
- Tag-and-probe approach

Our measurement strategy

Tag-and-probe approach for looking at dilepton *tt* events

1) Trigger 1 lepton
 (μ, e)
 2) Require 2 b-jets
 3) Require 2nd lepton
 (μ)

Measurement strategy

- Distinguish leptons from τ decays than leptons directly from W^{+} by:
 - Decay parameter (d₀)
 - Difference in lepton p_t spectra caused by sharing of the τ momenta between decay products

Measurement and Analysis strategy

• Examine $d_0 - e\mu$ and $d_0 - \mu\mu$ channels with various event generators (ATL-FAST-2 (AF2) and Powheg Herwig 7 (f-PH7)) and compare to nominal (we use Pythia); below plots include all p_t bins

Measurement and Analysis strategy

- Examine $d_0 e\mu$ and $d_0 \mu\mu$ channels with various event generators (ATL-FAST-2 (AF2) and Powheg Herwig 7 (f-PH7)) and compare to nominal (we use Pythia)
- Currently Asimov
- These channels have a lot of systematic and statistical uncertainties that are investigated with TREx-Fitter

Correlation matrix

- For all inputted uncertainties, gives correlation between them
- Ideally, we do not want any correlation between our uncertainties

Nuisance Parameter Ranking Plot

- Ranks greatest (top) to least (bottom) dominance of systematic uncertainties and fit parameters in overall nominal uncertainty (μ(tt̄)... right)?
- Much of our analysis is currently dominated by Monte Carlo uncertainties (the γs)

Abroad experiences! Thank you I have had a wonderful time so far!!!

