Simulation Studies of X-Ray Conversion Targets for Radio Therapy Linacs

Sarah Deutsch

Walter Wuensch, Andrea Latina, Manjit Dosanjh

Radiotherapy Linacs

- Medical linear accelerator (LINAC)
 - Deliver x-rays to irradiate a tumor
 - Destroy cancer cells while avoiding healthy cells

LINAC Operation

- Accelerated electrons collide with tungsten target to produce x-rays
- X-rays are shaped via multileaf collimator to target the cancer cells
- Beam exits via a gantry, which can rotate around the patient
 - Deliver x-rays to tumor from several angles
 - Minimize dose to healthy tissue

Pricing

\$175,000 to \$1,500,000 Varian & Elekta

Project Aim

Study x-ray target for applications in radiotherapy linacs for developing countries

Simulations

- TOPAS
- Study interaction of 5 MeV beam of 10,000 incident e- on Tungsten targets
 - Thickness ranging 1 10 mm

Topas Simulations

Next Steps

- Continue to study distribution of outgoing photons
- Calculate cross section of Bremsstrahlung photons
- Include patient in simulation
 - Calculate dose
- End goal: description of optimal target that could be implemented in radiation therapy linacs

Excursions

Questions?