Upgrading the SHINE Local TPC Data Acquisition System

Anna Coerver
Supervisor: Wojciech Bryliński
August 15, 2019
Figure: Left: Phase diagram of strongly interacting matter. Right: Coverage of past (and future) data taking runs.
Motivation for open charm measurements:

1. What is the mechanism of open charm production?
2. How does the onset of deconfinement impact open charm production?
3. How does the formation of quark-gluon plasma impact J/Ψ production?
Feasibility of Open Charm Measurements

SHINE has already confirmed its ability to measure D^0 mesons (31% of open charm production) after installation of prototype vertex detector.

After 2020 upgrades, SHINE expects to be able to measure all popular c and \bar{c} carriers.

Figure: D^0 peak measured by SHINE

$\sigma_{D^0}=14.6 \pm 3.2$ MeV
yield = 62 ± 19

NA61/SHINE performance
NA61/SHINE 2020 Upgrade

Construction of Vertex Detector (VD) for D^0, \bar{D}^0 decay reconstruction

Replacement of the TPC read-out electronics to increase data rate to 1 kHz

New trigger and data acquisition system

New Time-of-Flight detectors

Upgrade of Projectile Spectator Detector

Figure: NA61/SHINE experiment schematic
Simulating the TPC DAQ

My project: to prepare a simulated data flow to the online event reconstruction system

- Set up a miniature TPC
- Take data with new readout electronics
- Develop software to feed this data to online reconstruction system
A Simulated TPC Using Cosmic Rays

- Trigger system: two layers of scintillators and photomultiplier tubes
- Detector: Low Momentum Particle Detector (miniature TPC) filled with gas mixture
- Readout electronics: 4 cards of 32 channels each
Online Event Display (particle tracks!)

Figure: Left: Pads vs. channels histogram. Right: Waveform plot of time vs. channel.
Simulated Data Flow

- **Reader**
 - Read header and total file size
 - Load everything else into buffer
 - Raw Event Object
 - Buffer of data
 - Event ID
 - Length of event

- **Queue of Raw Event Objects**

- **Decoder**
 - Read subheaders, separate data into channels, get ADC & timestamp values

- **Queue of Decoded Event Objects**
 - Data can be sent to event reconstruction software!

- **Data files (binary)**
Simulating Trigger Signals

• Need a way of simulating the pseudo-random timing of receiving events
• Distribution of randomly generated time delays given an average rate fits to an exponential decay function
• Pull time delays from this probability distribution to simulate real data taking
• Combine this software with pulses from an Arduino to create hardware trigger
Summary

• NA61 is shifting to a focus on measuring charm production at SPS energies
• This requires an increased data rate, which means new readout electronics
• In order to test event reconstruction software, I created a simulated flow of data from TPC readout electronics to the event reconstruction software
Acknowledgements

A huge thank you to my supervisor Wojciech Bryliński for his support and guidance!

Thank you to the UM Program, the NSF, Junjie, Steve and Alexis for making this summer possible.
Pictures!
Backup
Models of charm production

Predictions for $\langle c\bar{c} \rangle$ in central Pb+Pb collisions at beam momentum of 158A GeV/c differ by about two orders of magnitude.

HSD: Linnyk, Bratkovskaya, Cassing, IJMP E17 1367.
HRG, Quark Coalesc. Stat.: Gorenstein, Kostyuk, Stoecker, Greiner, PL B 509, 277.
SMES: Gazdzicki, Gorenstein, APP B30, 2705.
Charm yield as the signal of deconfinement

Phase Transition: $T_c \approx 150$ MeV

- confined matter \rightarrow quark-gluon plasma
- $D\bar{D}$ mesons \rightarrow (anti-)charm quarks
- $2M \approx 3.7$ GeV \rightarrow $2m \approx 2.6$ GeV

Statistical Model of Early Stage

- $m_Q^c = 1.3$ GeV
- $g_{w}^c = 10$

QCD-inspired calculations
J/ψ suppression as the signal of deconfinement

Medium reduces probability of J/ψ production.