
REVIEW OF PRODUCTION
THRESHOLDS

Plenary 5

Marc Verderi
LLR/Ecole polytechnique
Jefferson Lab Collaboration Meeting
September 2019

Layout

• Introduction

• Cuts & Kernel classes

• Stating on Present Scheme

• Considering an Other Scheme

Introduction

Production Thresholds: initial scheme
• Production thresholds (aka “cuts”) were initially considered in

RD44/Geant4 as an issue fundamental enough to be addressed at
the kernel classes level:
1. With a mandatory definition in G4VUserPhysicsList :

 virtual void SetCuts() = 0;

• that, up to 2011

• and then a default implementation came for SetCuts().

2. An explicit declaration of particles subject to cuts in

G4ParticleDefinition

• With the predefined and fixed set {𝑒−, 𝑒+, 𝛾 and 𝑝}

3. A control at tracking time by the G4SteppingManager of the
conformance of the produced secondaries wrt to their thresholds

• Done after each process DoIt invocation

• But allowing exceptions, though, with the “GoodForTracking” flag

Particles Under Production Thresholds

• We use cuts for very different reasons:
• For 𝑒−and 𝛾 they are essentially unavoidable, vital
• For proton and (silently) for ions they are physically very important but not vital
• For 𝑒+they are for convenience for a quite special use-case

• And if we accept the use-case for 𝑒+ we have to accept it for all particles !

• Promoting these cuts, on the same foot, at the kernel level, is certainly puzzling.

Particle

produced

Production

process
Motivation

𝑒− Ionization
Heavy production (limited by energy binding to atoms). These are

actually “recoil electrons”. Threshold needed to limit the production.

𝑒+ Conversion
No divergence nor heavy production. Use case : production cut in

mountain rock for, e.g., dark matter experiments.

𝛾 Bremsstrahlung
Cross-section divergence (actually limited by dielectric effects at

very low energies). Threshold needed to limit the production.

𝑝 Hadron elastic
Threshold for recoil protons, e.g. 𝑛 scattering on proton, ejecting it.

Threshold defines the “visibility” cut.

Ion Hadron elastic
Threshold on recoil, as for protons, defined internally in G4Hadron-
ElasticProcess as (100*keV)*proton_cut_in_mm

Questions motivating this review
• Isn’t this scheme “overkilling” ?

• Because only a few processes need thresholds

• And because of the control at tracking after every process DoIt()

• Is this scheme effective ?
• Because of the GoodForTracking flag which “offers” to bypass the control anyway

• Why having a “production cut” for 𝑒+ and not for all other particles ?

• Why attaching production cuts to particles while these are essentially a matter
of processes ?

• Could we consider a simpler scheme ?
• Giving full responsibility to the few processes concerned to handle “their” cuts

• Which does not prevent to have centralized tools to configure the cuts

• Offloading kernel classes, in particular the G4SteppingManager, from this responsibility

• Leaving open to all processes the opportunity to define cuts (as for 𝑒+) if they wish ?

Cuts & Kernel classes

Cuts in particles category
• G4ParticleDefinition allows particles to remember if they are subjects to cuts:

• Public methods:
void SetApplyCutsFlag(G4bool);
G4bool GetApplyCutsFlag() const;

• Implementation:
void G4ParticleDefinition::SetApplyCutsFlag(G4bool flg)
{
 if(theParticleName=="gamma"
 || theParticleName=="e-"
 || theParticleName=="e+"
 || theParticleName=="proton")
 { fApplyCutsFlag = flg; }
 else
 {
 G4cout
 << "G4ParticleDefinition::SetApplyCutsFlag() for " << theParticleName
 << G4endl;
 G4cout
 << "becomes obsolete. Production threshold is applied only for "
 << "gamma, e- ,e+ and proton." << G4endl;
 }
}

• Note also the typedef G4ParticleWithCuts:
• typedef G4ParticleDefinition G4ParticleWithCuts;
• Used in some places.

• SetApplyCutsFlag(G4bool flg) is never called by default
• It is called upon user’s request, to extend the application of cuts whatever process produces these secondaries

Cuts in tracking category
• The stepping manager DoIt methods:

• void G4SteppingManager::InvokeAtRestDoItProcs()
• void G4SteppingManager::InvokeAlongStepDoItProcs()
• void G4SteppingManager::InvokePostStepDoItProcs()

• void G4SteppingManager::InvokePSDIP(size_t np)

• call for each secondary created by the current process the “clean-up”
mechanism, which is ~50 lines long.

• ApplyProductionCut method:
• Checks if the secondary conforms to production cuts
• Two cases:

• If the track is set “GoodForTracking” by the process, it is accepted anyway
• Use case: production near boundary
• Mainly (and likely only) for EM processes

• Otherwise if its energy is below the cut, it is set to zero kinetic energy, transferring the energy to
local deposit
• And will be later killed if not AtRest processes are attached to it.

• Mechanism hence activated if ApplyProductionCut(…) has been called by
the user
• And is not effective otherwise

Each of these

methods are 90

– 130 lines long,

among which

~50 are for cuts

Stating on Present Scheme

Stating on present scheme
• By default, this “cleaning” mechanism is not activated:

• Processes most involve with cuts (ionisation, brem, had elastic) manage their
production without it

• And the code of the mechanism is “dormant”
• When activated, a big “consumer” is the photoelectric process

• That terminates the gammas
• In what case the mechanism terminates the newly borned electrons

• But any/many more “clients” ?
• If not, interest of keeping this mechanism is questionable.

• What about the motivation for the GoodForTracking flag ?

• It is meant to authorize production of secondary
tracks below threshold, near a boundary

• Issue of simulating properly the interface == issue
of simulating properly the lower energy demand
• The tracking can’t judge by itself !
• Only the process can know
• Hence the GoodForTracking flag.

• So GoodForTracking appears as a “corrective
action” for having activated the mechanism

Considering an Other Scheme

Proposal
• Kernel classes are offloaded from cuts control

• Including control at tracking time
• Classes involved: G4ParticleDefinition, G4SteppingManager

• Processes are given the full responsibility to manage their production
thresholds
• Whatever if this is due to divergences or not
• Common tools are used to expose the cuts configuration to the user and allow her/him to

set it up
• And if a user needs cuts applied whatever process there are solutions:

• A stacking action
• Or a wrapper of the few processes too “lazy” to control production by themselves

• The machinery for material-cut couple becomes extendable:
• It has the set {𝑒−, 𝛾 and 𝑝} by default
• But is extendable to any other type of particle

• Dedicated tests are added to check for conformance of secondary production
• A test using a simple user stepping action could do it

• Backward compatibility should be considered as well
• At least for some time

