Status of Hadronic String Models

Alberto Ribon , Vladimir Uzhinsky CERN EP/SFT

Outline

- FTF
- QGS
- Hadronic Showers
- String models for G4 10.6
- First look at very high energies

FTF

Fritiof (FTF) model

- Phenomenological hadronic string model, completely rewritten and extended at lower energies by V. Uzhinsky
 - It has allowed, for the first time in G4 **9.6**, to have full transition between a string model and Bertini intra-nuclear cascade, eliminating the need of Gheisha (then removed in G4 **10.0**)
- It is the production string model (via the physics list FTFP_BERT) used by LHC experiments in Run 2
 - Replacing QGS (via the physics list QGSP_BERT) used in Run 1
- Development of FTF has always been, and still is, driven by thin-target data
 - Mostly used data from NA61/SHINE, NA49, HARP
 - Light target materials (H & C) for NA61/SHINE and NA49
 - Variety of materials (Al, Cu, Pb, etc.) for HARP

which then gave significant improvements in the simulation of hadronic showers up to version G4 **10.1**

FTF main developments in G4 10.{2,3,4}

• FTF in G4 10.2

- Changed the preparation of the excited nuclear remnant to hand over to Precompound / de-excitation
- Better thin-target (slow neutron production in ITEP),
 but worse hadronic showers: higher energy response

FTF in G4 10.3

- Improved treatment of Δ -isobars; revised quark-exchange process; improved Lund string hadronization; re-tuning of model parameters
- Worse hadronic showers: slightly higher energy and narrower showers
- **Split** between **development version** (in reference tags & beta : better thin-target, worse hadronic showers) and **production/stable version** (in public releases: better hadronic showers, as in G4 10.1, but worse thin-target)

• FTF in G4 10.4

- Introduction of **rotating strings** at the level of string fragmentation; smearing of resonance masses (e.g. Δ and ρ); re-tuning of model parameters
- Better thin-target at low energies (HARP data); worse hadronic showers (smaller fluctuations of energy response, but wider showers)
- Kept the split between development and production/stable versions

Status of **FTF** model

• FTF in G4 10.5

- Decided to release the development version
- Improved thin-target description and wider hadronic showers, while our suggested new treatment of Birks quenching (i.e. fitting the Birks parameter from e/π data) can cope with the increased visible energy
- After the 2018 Collaboration meeting, retuning of the strange quark sector of the Lund string fragmentation

Changes on FTF after G4 10.5

- Validation and refinement of nucleus-nucleus interactions (see an example in the next page)
- Improved annihilation at rest of antiprotons and light anti-ions
- Extended configuration interface for pion projectile parameters
- Fixed a memory leak

Results of the improvements for E895 exp.

J. L. Klay et al., Phys. Rev C 68, 054905 (2003)

Charged pion production in 2A to 8A GeV central Au+Au Collisions,

Dashed lines are previous calculations, solid ones — current results.

Results become better for high energies, T > 6 GeV.

QGS

QGS (Quark Gluon String) model

- The QGS model of Geant4 has been successfully used in production for several years by ATLAS and CMS simulations
 - In particular for all Run 1 analyses, including the Higgs discovery
- After the improvements and low-energy extensions of FTF model made by V. Uzhinsky, FTF became the recommended string model in Geant4 for high-energy applications
 - It is used for Run 2 analyses by all LHC experiments
- Still, there are two main reasons to keep developing QGS
 - 1. For evaluation of systematic errors, to compare against FTF
 - 2. For its potential applicability up to slightly higher energy than FTF
 - QGS is more theoretically motivated than the phenomenological FTF model
 - Might be relevant for the increased LHC energy: 7-8 TeV --> 13-14 TeV, and even more for FCC @100 TeV
 - But QGS cannot be applied to much higher energies than few TeV: it does not included hard scattering (i.e. jet production) (the same applies for FTF as well)

QGS String Fragmentation

- In 2014, V. Uzhinsky made the first step in the revision of the Geant4 QGS model: the string fragmentation
 - The quark and diquark fragmentation functions (in G4 10.0) were significantly different with respect to Kaidalov's prescription
 - Kaidalov argued that the use of fragmentation functions extracted from e+ e- annihilation or in deep inelastic scattering is not justified in soft processes, and inconsistent with Reggeon theory
 - Vladimir changed the fragmentation functions of Geant4 QGS to bring them consistent with those recommended by Kaidalov
 - This development was included in G4 10.1
 - Although not driven by experimental data, the new QGS string fragmentation improved the description of some thin-target data
- Significant impact on hadronic showers
 - lower energy response, bigger (longer and wider) showers
 - closer to the hadronic showers of FTF model

QGS String Formation

- V. Uzhinsky's improvements in the formation of quark strings
 - Inclusion of the Reggeon Cascade, as in FTF
 - Rewriting of the sampling of parton momenta
 - Improvement of the Fermi motions of target nucleons
 - Inclusion of multi-pomeron exchanges
 - More accurate preparation of the excited nuclear remnant
 - Constituent quark masses have been introduced
 - Pomeron and reggeon parameters are set as prescribed by A. Kaidalov and M. Poghosyan
 - Interpretation of cutted (non-vacuum) reggeons as quark exchange processes
 - These developments have been included in reference tags & beta
 - All these improved the description of thin-target data, but for public releases we kept the production/stable version (equivalent to 10.1) to provide stable hadronic showers, as done for FTF, until 10.5

Status of **QGS** model

- QGS in G4 10.5
 - Decided to release the development version
 - Improved thin-target description, although narrower hadronic showers and increased visible energy
 - The increased visible energy can be compensated with our suggested new treatment of Birks quenching, i.e. fitting the Birks parameter from e/π
 - After the Collaboration meeting, improved the kaon treatment and performed further validation
- Changes on QGS after G4 10.5
 - Further validation
 - On-going code review
 - Fixed a bug in the computation of the transverse mass

FTF vs. QGS

- In Geant4 version 10.5, from thin-target data, we can generally conclude that QGS becomes competitive with FTF roughly above ~ 15 20 GeV (lab. projectile Ekin) whereas below this energy FTF is better
 - In the QGS-based physics lists, the transition between FTF and QGS is currently in the region [12 , 25] GeV
- QGS model is more theory-based than FTF, therefore QGS is expected to be more reliable at high energies
 - Above about ~0.5 TeV, where there are no clean thin-target data
 - But both models cannot be valid above few TeV
 - Because of the lack of gluon-jet production
 - Likely acceptable for LHC experiments, but not for FCC...
- QGS hadronic showers are narrower and with higher energy response than those of FTF

• FTF hadronic showers expected to agree better with test-beam data

Hadronic Showers

Pion-showers:

Note:

FTFP_BERT: [3, 6] GeV QGSP_FTFP_BERT: [3, 6] GeV; [12, 25] GeV

Energy Response

Energy Width

Energy Resolution

Longitudinal Shape

Lateral Shape

String models for G4 10.6

String models for G4 10.6

- V. Uzhinsky is now working at CERN since 1st August, for 4 months – on the string models. His current main task is to extend the string models to charm and bottom hadrons i.e. transporting and/or producing heavy hadrons
 - Interest in FCC (as well as LHC) experiments to simulate hadronic interactions of highly boosted charmed and bottom hadrons in the beam pipe and first layers of the silicon tracker
 - Grichine's Glauber-Gribov nuclear cross sections for heavy hadrons will be available in the coming release G4 10.6
 - Unfortunately, no experimental data is available!
- This extension will be common for FTF and QGS for the string fragmentation part, whereas the string formation part will be done separately for FTF and QGS
 - Starting first with FTF; not yet clear how much will go in G4 10.6
 - Aida Galoyan will collect experimental data on charm production

First Look at Very High Energies

Set-up

- Model-level test of hadron-nucleus interactions with
 - FTFP and QGSP from G4 10.5.p01
 - EPOS-LHC (via CRMC interface in Hadr02 in G4 10.5.p01)
 - Cosmic Ray Monte Carlo : https://web.ikp.kit.edu/rulrich/crmc.html
 - 10'000 collisions for each configuration
- Hadron projectile kinetic energies (lab frame):
 - 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 TeV
- Hadron projectile types:
 - Charged pions, kaons, nucleons, anti-nucleons
- Target nuclei:
 - Si, Fe, Cu, W, Pb
- Observables:
 - Multiplicity and energy flow for different categories of secondaries
 - For all angles and energies

Antibaryon production

π^- on **Fe**

Energy Flow

multiplicity_pim_fe_10.5.p01 antibaryon vs E

pim_fe_10.5.p01 antibaryonSCE vs E

Hyperon production

Kaon production

Multiplicity

 π on **Fe**

Energy Flow

multiplicity_pim_fe_10.5.p01 kaon vs E

pim_fe_10.5.p01 kaonSTE vs E

Proton production

 π^- on **Fe**

Energy Flow

multiplicity_pim_fe_10.5.p01 p vs E

pim_fe_10.5.p01 protonSKE vs E

Neutron production

Charged Pion production

$\pi^{\circ} + \eta + \eta' + y$ production

Multiplicity

 π^- on **Fe**

Energy Flow

multiplicity_pim_fe_10.5.p01 pizgammaeta vs E

pim_fe_10.5.p01 pizgammaetaSTE vs E

