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Why discrete electron models for gold are needed?

• Gold nanoparticles (GNPs) are currently being studied as a mean 
to increase therapeutic efficacy in radiotherapy

• GNP enhance the local dose under keV photon irradiation 
because of their higher photo-absorption cross section compared 
to water

• The increase of local dose around the GNP is mainly due to the 
emission of a large number of low-energy Auger electrons

• Discrete physics models are necessary for studying the energy 
deposition at the nanoscale by these low-energy (sub-keV) 
electrons
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Papers on Monte Carlo GNP radioenhancement
as of August 2018

3

Most studies have used condensed-
history or “macroscopic” MC codes 

which are NOT suitable for the 
nanoscale

Only a small number of studies have 
used track-structure MC codes 

which offer nanometer resolution



The first discrete GNP electron models of 
Geant4 (GNP2016)

• Developed by Sakata and co-workers in 2016 (J. Appl. Phys.) 

• GNP2016 models improve the low-energy EM models of 
Geant4 (Livermore, Penelope) in two important ways:

ª Allow event-by-event electron transport in gold medium 
which is needed for GNP radioenhancement studies

ª Allow much higher spatial resolution by “safely” extending
the tracking & production cutoff energies down to 10 eV
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Motivation for a new model

Deficiencies of the GNP2016 energy-loss model:
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ª The energy-loss channels (ionizations, excitations, plasmon) are 
treated by different theories

o Not self-consistent

ª Ionization cross sections are based on an atomic model (RBEBV)

o Condensed-phase effects are ignored 

o Not justified at low energies (sub-keV)

ª Plasmon excitations are based on Quinn’s model

o Free-electron model

o Neglects plasmon damping (assumes infinite plasmon lifetime)

o Not accurate below few 100 eV



Aim of this work (2018)

To provide an alternative discrete model for GNP based on 
the ELF (energy-loss-function) approach
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• The benefits of the ELF approach:

ª It is robust

ª Self-consistency tests are available

ª It is based on experimental data for solid-Au

ª It accounts for condensed-phase effects



GNP2016 vs. GNP2018 models
Process 2016 models 2018  models
Elastic ELSEPA ELSEPA
Ionization Rel. Binary 

Encounter Bethe 
Vriens

Dielectric

Excitation Exp.+Dirac B-
Spline R Matrix

Dielectric

Plasmon Quinn Dielectric
Bremsstrahlung Seltzer & Berger Seltzer & Berger
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Methodology
• The ELF approach starts from the double-differential cross 

section of the plane-wave Born approximation (PWBA): 
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Energy-loss-function (ELF)

In PWBA the ELF is the main material property to calculate 
energy-loss cross sections

8



shellsinnershellsouter ),(
1Im

),(
1ImELF

−−








ε

−+







ε

−=
qEqE

ELF model for gold

N, O, P shells + plasmon
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• The ELF model considers the following energy-loss 
channels above 10 eV:

ª12 outer ionization sub-shells: N1, N2, N3, N4-5, 
N6, N7, O1, O2, O3, O4, O5, P1 (binding energies 
from EADL)

ª6 inner ionization sub-shells: K1, L1, L2-3, M1, 
M2-3, M4-5 (binding energies from EADL)

ªPlasmon channel (~35 eV)



ELF model at q=0

Overall good representation of experimental & NIST data
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ELF model at q>0

The model reproduces the 
Bethe ridge at high-q
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First self-consistency test: The f-sum-rule test



Mean excitation energy (I-value): 
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Second self-consistency test: The I-value test



Total inelastic cross section:
comparison against NIST (TPP formula)
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ª Sakata 2016 is 200-
300% higher than NIST

ª ELF 2018 is in good 
agreement (~10%) 
with NIST

ELF 2018 model

Sakata 2016 model

NIST
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Stopping power:
comparison against NIST (Shinotsuka et al. 2012)
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ª Good agreement above 
few 100 eV

ª Below 300 eV Sakata 
2016 departs from both 
ELF 2018 and NIST

ª ELF 2018 is in good 
agreement with NIST 
over the whole energy 
range



Summary
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• An alternative discrete model for gold has been developed based on the ELF 
approach. The new model uses experimental data for solid-Au and dielectric 
response theory

• The new model:

ª is (more) robust

ª satisfies important self-consistency tests

ª offers better agreement with available NIST data 

• We recommend that the new model should be preferred in the energy range 
from 100 eV to 10 keV

• From 10 eV to 100 eV it must be considered as qualitative until further 
refinements are made (e.g., addition of non-Born effects, more elaborate 
dispersion relations, and discrete excitations)
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Thank you for the attention!
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