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Why discrete electron models for gold are needed?

e Gold nanoparticles (GNPs) are currently being studied as a mean
to increase therapeutic efficacy in radiotherapy

e GNP enhance the local dose under keV photon irradiation
because of their higher photo-absorption cross section compared
to water

* The increase of local dose around the GNP is mainly due to the
emission of a large number of low-energy Auger electrons

e Discrete physics models are necessary for studying the energy
deposition at the by these low-energy (sub-keV)
electrons
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The first discrete GNP electron models of
Geant4 (GNP2016)

e Developed by Sakata and co-workers in 2016 (J. Appl. Phys.)

e GNP2016 models improve the low-energy EM models of
Geant4 (Livermore, Penelope) in two important ways:

v Allow event-by-event electron transport in gold medium
which is needed for GNP radioenhancement studies

v Allow much higher spatial resolution by “safely” extending
the tracking & production cutoff energies down to 10 eV



Motivation for a new model

Deficiencies of the GNP2016 energy-loss model:

v The energy-loss channels (ionizations, excitations, plasmon) are
treated by different theories

O Not self-consistent

v lonization cross sections are based on an atomic model (RBEBV)
O Condensed-phase effects are ignored
O Not justified at low energies (sub-keV)

v Plasmon excitations are based on Quinn’s model

O Free-electron model
O Neglects plasmon damping (assumes infinite plasmon lifetime)

O Not accurate below few 100 eV



Aim of this work (2018)

To provide an alternative discrete model for GNP based on
the

* The benefits of the ELF approach:
v It is robust
v Self-consistency tests are available
v It is based on experimental data for solid-Au

v |t accounts for condensed-phase effects
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ethodology

oproach starts from the double-differentiz
of the plane-wave Born approximation (PWE

Energy-loss-function (ELF)
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Dielectric-response-function (DRF)

the ELF is the main material property to
energy-loss cross sections
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e The ELF model considers the following energy-loss
channels above 10 eV:

v'12 outer ionization sub-shells: N, N2, N3, N4-5,
N6, N7, O1, 02, O3, 04, O5, P1 (binding energies
from EADL)

v'6 inner ionization sub-shells: K1, L1, L2-3, M1,
M2-3, M4-5 (binding energies from EADL)

v'Plasmon channel (~35 eV)
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ELF of solid-Au
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Valence ELF
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First self-consistency test: The f-sum-rule test

1
y y 7 = EIm| — dE
f-sum-rule 52N j (E.q=0)
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ELF model

Z(model) versus Z(Au)

difference < 1%

13



Second self-consistency test: The |-value test

Mean excitation energy (l-value):

jEln(E)lm— L dE
Inl =2 - e(E,q:_O)_
jElm— . dE
| &(E,q=0)

I-value (model) vs. I-value (ICRU)

difference < 0.1%
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Summary

An alternative discrete model for gold has been developed based on the ELF
approach. The new model uses experimental data for solid-Au and dielectric
response theory

The new model:
v' is (more) robust
v' satisfies important self-consistency tests
v’ offers better agreement with available NIST data

We recommend that the new model should be preferred in the energy range
from 100 eV to 10 keV

From 10 eV to 100 eV it must be considered as qualitative until further
refinements are made (e.g., addition of non-Born effects, more elaborate
dispersion relations, and discrete excitations)
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