Development of a discrete energy-loss model for low-energy electrons in gold using the ELF approach

Ioanna Kyriakou & Dimitris Emfietzoglou

University of Ioannina, GREECE

Dousatsu Sakata

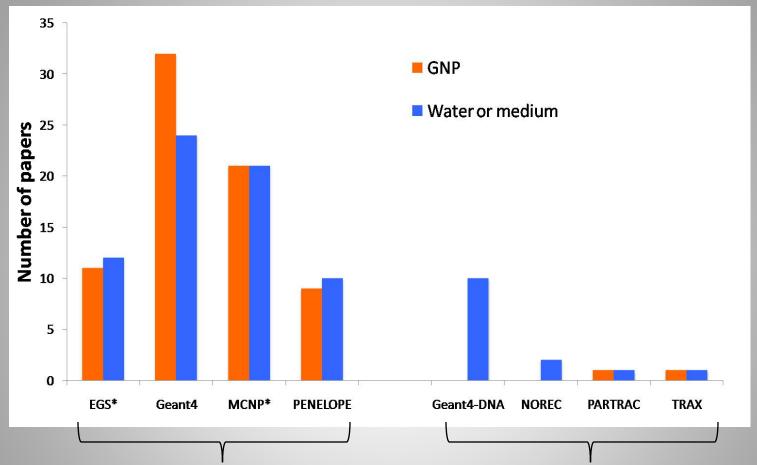
NIRS, JAPAN

Sebastien Incerti

CNRS, FRANCE

Susanna Guatelli

University of Wollongong, AUSTRALIA


Geant4 collaboration meeting

Jefferson Lab, USA, 23-27 Sept. 2019

Why discrete electron models for gold are needed?

- Gold nanoparticles (GNPs) are currently being studied as a mean to increase therapeutic efficacy in radiotherapy
- GNP enhance the local dose under keV photon irradiation because of their higher photo-absorption cross section compared to water
- The increase of local dose around the GNP is mainly due to the emission of a large number of low-energy Auger electrons
- Discrete physics models are necessary for studying the energy deposition at the nanoscale by these low-energy (sub-keV) electrons

Papers on Monte Carlo GNP radioenhancement as of August 2018

Most studies have used condensedhistory or "macroscopic" MC codes which are NOT suitable for the nanoscale Only a small number of studies have used track-structure MC codes which offer nanometer resolution

The first discrete GNP electron models of Geant4 (GNP2016)

- Developed by Sakata and co-workers in 2016 (J. Appl. Phys.)
- GNP2016 models improve the low-energy EM models of Geant4 (Livermore, Penelope) in two important ways:
- ✓ Allow event-by-event electron transport in gold medium which is needed for GNP radioenhancement studies
- ✓ Allow much higher spatial resolution by "safely" extending the tracking & production cutoff energies down to 10 eV

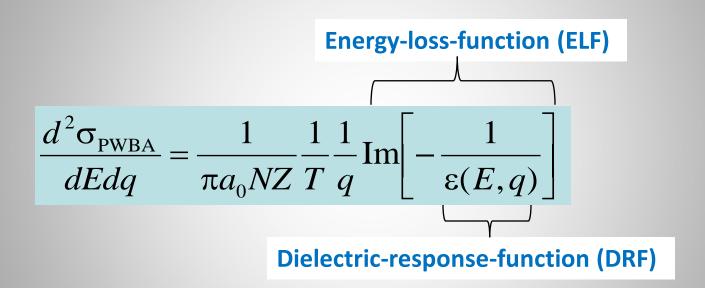
Motivation for a new model

Deficiencies of the GNP2016 energy-loss model:

- ✓ The energy-loss channels (ionizations, excitations, plasmon) are treated by different theories
 - Not self-consistent
- ✓ Ionization cross sections are based on an atomic model (RBEBV)
 - Condensed-phase effects are ignored
 - Not justified at low energies (sub-keV)
- ✓ Plasmon excitations are based on Quinn's model
 - Free-electron model
 - Neglects plasmon damping (assumes infinite plasmon lifetime)
 - Not accurate below few 100 eV

Aim of this work (2018)

To provide an alternative discrete model for GNP based on the ELF (energy-loss-function) approach


- The benefits of the ELF approach:
 - ✓ It is robust
 - √ Self-consistency tests are available
 - √ It is based on experimental data for solid-Au
 - ✓ It accounts for condensed-phase effects

GNP2016 vs. GNP2018 models

Process	2016 models	2018 models
Elastic	ELSEPA	ELSEPA
Ionization	Rel. Binary Encounter Bethe Vriens	Dielectric
Excitation	Exp.+Dirac B- Spline R Matrix	Dielectric
Plasmon	Quinn	Dielectric
Bremsstrahlung	Seltzer & Berger	Seltzer & Berger

Methodology

 The ELF approach starts from the double-differential cross section of the plane-wave Born approximation (PWBA):

In PWBA the ELF is the main <u>material property</u> to calculate energy-loss cross sections

ELF model for gold

$$ELF = Im \left[-\frac{1}{\varepsilon(E, q)} \right]_{\text{outer-shells}} + Im \left[-\frac{1}{\varepsilon(E, q)} \right]_{\text{inner-shells}}$$

N, O, P shells + plasmon

Solid-state model

plasmon-pole approximation

K, L, M shells

Atomic model

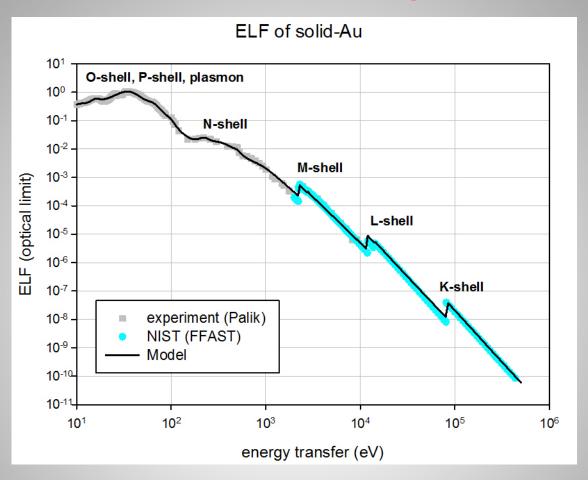
Theory

Hydrogenic GOS

Model

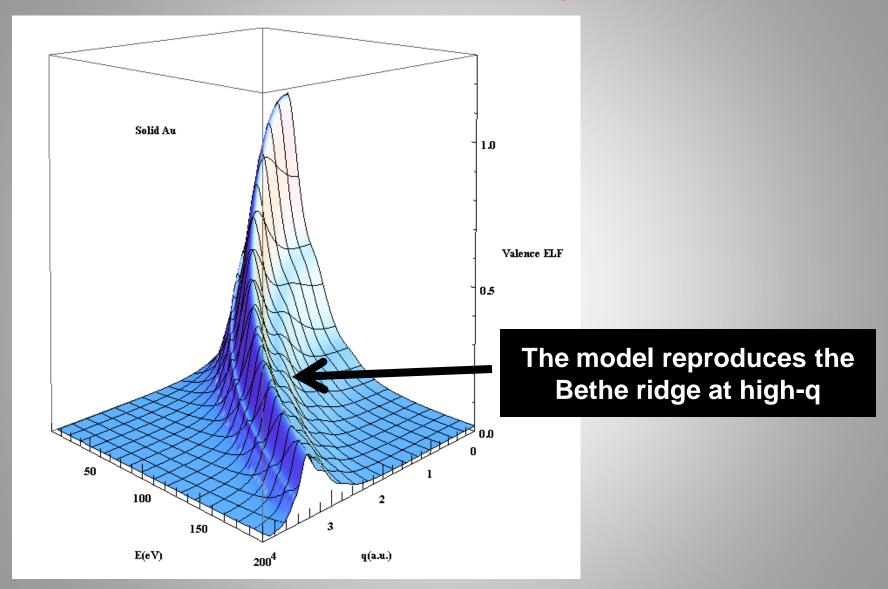
parameters

from


experimental

data for

solid-Au


- The ELF model considers the following energy-loss channels above 10 eV:
 - √12 outer ionization sub-shells: N₁, N2, N3, N4-5, N6, N7, O1, O2, O3, O4, O5, P1 (binding energies from EADL)
 - √6 inner ionization sub-shells: K1, L1, L2-3, M1, M2-3, M4-5 (binding energies from EADL)
 - ✓ Plasmon channel (~35 eV)

ELF model at q=0

Overall good representation of experimental & NIST data

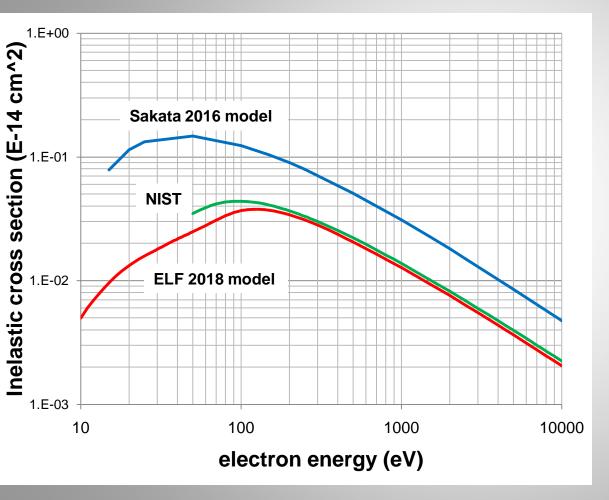
ELF model at q>0

First self-consistency test: The f-sum-rule test

f-sum-rule
$$Z = \frac{1}{2\pi^2 N} \int_0^\infty E \operatorname{Im} \left[-\frac{1}{\varepsilon(E, q = 0)} \right] dE$$

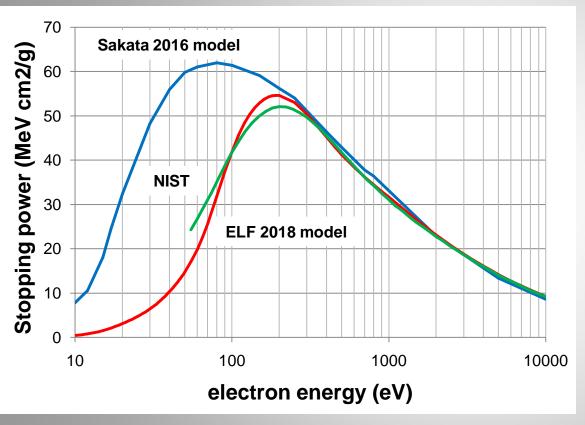
ELF model

Z(model) versus Z(Au) difference < 1%


Second self-consistency test: The I-value test

Mean excitation energy (I-value):

$$\ln I = \frac{\int_{0}^{\infty} E \ln(E) \operatorname{Im} \left[-\frac{1}{\varepsilon(E, q = 0)} \right] dE}{\int_{0}^{\infty} E \operatorname{Im} \left[-\frac{1}{\varepsilon(E, q = 0)} \right] dE}$$


I-value (model) vs. I-value (ICRU) difference < 0.1%

Total inelastic cross section: comparison against NIST (TPP formula)

- ✓ Sakata 2016 is 200-300% higher than NIST
- ✓ ELF 2018 is in good agreement (~10%) with NIST

Stopping power: comparison against NIST (Shinotsuka et al. 2012)

- √ Good agreement above few 100 eV
- ✓ Below 300 eV Sakata 2016 departs from both ELF 2018 and NIST
- ✓ ELF 2018 is in good agreement with NIST over the whole energy range

Summary

- An alternative discrete model for gold has been developed based on the ELF approach. The new model uses experimental data for solid-Au and dielectric response theory
- The new model:
 - √ is (more) robust
 - √ satisfies important self-consistency tests
 - √ offers better agreement with available NIST data
- We recommend that the new model should be preferred in the energy range from 100 eV to 10 keV
- From 10 eV to 100 eV it must be considered as qualitative until further refinements are made (e.g., addition of non-Born effects, more elaborate dispersion relations, and discrete excitations)

Acknowledgement

 Australian Research Counsil (ARC Contract No. DP170100967)

• French National Center for Scientific Research (CNRS PICS #7340)

Thank you for the attention!