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Outline
● Status of String models

● FTF
● QGS

● Status of Intranuclear Cascade models
● BERT
● BIC
● INCLXX

● String−Cascade Transition Region

● Others
● Interface to Fortran EPOS
● Hadronic models per Region
● Neutrino Interactions
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String models
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Status of FTF (Fritiof) model
● FTF in G4 10.5

● Decided to release the development version
● Improved thin-target description and wider hadronic showers,

while our suggested new treatment of Birks quenching (i.e. fitting 
the Birks parameter from e/π data) can cope with the increased 
visible energy

● After the 2018 Collaboration meeting, retuning of the
strange quark sector of the Lund string fragmentation

● Changes on FTF after G4 10.5
● Validation and refinement of nucleus-nucleus interactions

(see an example in the next page)
● Improved annihilation at rest of light anti-ions
● Extended configuration interface for pion projectile parameters
● Fixed a memory leak 
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Status of QGS (Quark-Gluon-String) model
● QGS in G4 10.5

● Decided to release the development version
● Improved thin-target description, although narrower hadronic 

showers and increased visible energy
– The increased visible energy can be compensated with our suggested

new treatment of Birks quenching, i.e. fitting the Birks parameter from e/π  

● After the Collaboration meeting, improved the kaon treatment
and performed further validation

● Changes on QGS after G4 10.5
● Further validation
● On-going code review
● Fixed a bug in the computation of the transverse mass
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FTF vs. QGS
● In Geant4 version 10.5, from thin-target data, we can 

generally conclude that QGS becomes competitive with 
FTF roughly above  ~ 15 − 20 GeV  (lab. projectile Ekin) 
whereas below this energy FTF is better

● In the QGS-based physics lists, the transition between FTF and 
QGS is currently in the region [ 12 , 25 ] GeV

● QGS model is more theory-based than FTF, therefore
QGS is expected to be more reliable at high energies

● Above about ~0.5 TeV, where there are no clean thin-target data
● But both models cannot be valid above few TeV

– Because of the lack of gluon-jet production

– Likely acceptable for LHC experiments, but not for FCC...

● QGS hadronic showers are narrower and with higher energy 
response than those of FTF

● FTF hadronic showers expected to agree better with test-beam data
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String models for G4 10.6
● V. Uzhinsky is now working at CERN – since 1st August, for

4 months – on the string models. His current main task is to 
extend the string models to charm and bottom hadrons 
i.e. transporting and/or producing heavy hadrons

● Interest in FCC (as well as LHC) experiments to simulate hadronic 
interactions of highly boosted charmed and bottom hadrons in the 
beam pipe and first layers of the silicon tracker

● Grichine's Glauber-Gribov nuclear cross sections for heavy hadrons 
will be available in the coming release G4 10.6

– Unfortunately, no experimental data is available !

● This extension will be common for FTF and QGS for the 
string fragmentation part, whereas the string formation 
part will be done separately for FTF and QGS

● Starting first with FTF ; not yet clear how much will go in G4 10.6
● Aida Galoyan will collect experimental data on charm production



9

Intranuclear Cascade models
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Bertini-like (BERT) model
● A few bug fixes

● Investigating possible improvements in multi-body phase 
generation

See Dennis' talks (plenary & parallel) for more details on Bertini

Binary Cascade (BIC) model

● Stable, no development
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INCLXX (Liege) model 
● Main physics developments included in G4 10.5 :

improved strangeness and few nucleon removal
● Introduced a new environmental variable G4INCLDATA, which 

should point to G4INCL1.0

● Several technical fixes included in G4 10.5
● MT-irreproducibility fixed in the patch, G4 10.5.p01

● No new development expected for G4 10.6
● Due to lack of man-power
● Pending fixes on memory leaks

● FTFP_INCLXX is the preferred physics list for ALICE
● It gives the best description of light ion production (d, t, 3He, α)

by ~GeV pion and nucleon interactions on the beam pipe & tracker
● But it is CPU costly (see later...) 
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Transition Region between
String and Cascade models
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Status up to G4 10.5.ref07
● [3, 12] GeV  transition region between FTFP and BERT

                     in FTFP_BERT physics list
● Since G4 10.3 (December 2016)
● The main motivation was to use more BERT and less FTFP to

have lower energy response and wider hadronic showers
● But thin-target data (HARP) prefer FTFP to BERT above ~ 5 GeV
● This transition region is for the main hadrons − pions, kaons, and 

nucleons − but for the other hadron types, different regions were 
used (mainly for historical reasons):

– [2, 6] GeV for hyperons (Λ , Σ , Ξ , Ω )

– [2, 4] GeV/nucleon for light ions ( d , t , He3, α )

● Transition region between BIC and FTFP was also different
(again, mainly for historical reasons): 

– [9.5, 9.9] GeV for nucleons

– For pions, either BERT, or BIC < 1.3 GeV, or BIC < 1.5 GeV was used 
depending on the physics list
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Change in G4 10.5.ref08
● [3, 6] GeV  new transition region between FTFP and BERT

                   in FTFP_BERT physics list
● Requested by CMS and supported by thin-target experimental data

● Discussed and agreed at the Hadronic Group meeting on July 24th 
● Took the occasion to set consistently the same transition region for 

all hadrons (i.e. also for hyperons and light ions)
● Reviewed also the transition for BIC (Binary Cascade model), for 

the physics list where it is used
– [3, 6] GeV between FTFP and BIC for proton and neutron

– For pions, BIC < 1.5 GeV , 1 GeV < BERT < 6 GeV , FTFP > 3 GeV

● Left unchanged the transition region QGSP − FTFP : [12, 25] GeV
● Left unchanged the transition region in these 4 special P.L. :

FTFP_BERT_ATL , INCLXX-based P.L. , NuBeam , ShieldingM
● See back up slides for the effects on hadronic showers
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Others
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Interface to Fortran EPOS
● The hadronic extended example Hadr02 in G4 10.5 

includes an interface to CRMC (Cosmic Ray Monte Carlo) − 
which offers the possibility to use generators like EPOS for 
final-state hadron-nucleus (and nucleus-nucleus) inelastic 
collisions at very high energies − and created a (local) 
physics list which uses this interface 

● The Physics List is called  CRMC_FTFP_BERT and the transition 
between CRMC and FTFP is currently set to be [100, 110] GeV

● Main interest for FCC, to simulate jets above ~ 10 TeV
– Hadron-nucleus interactions up to at least ~ 1 TeV (projectile kinetic energy

in the Lab frame) are expected to be well described by the Geant4 string 
models (FTF & QGS); above this, missing gluon-jet production 

● Currently under testing in the context of FCC
– At model-level we see fewer and more energetic secondaries in G4 FTF & 

QGS with respect to EPOS due to the lack of gluon-jet emissions

● Needs a special version of CRMC adapted for Geant4 use...
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Hadronic models per Region
● Geant4 physics list is defined globally, not per region

● Sometimes users would like to use a reference physics list,
e.g. FTFP_BERT, but replacing a hadronic physics model in
a region with a more precise model

● Recent request from ALICE : to be able to use INCLXX in the 
Tracker region, while using BERT elsewhere

– INCLXX describes better the production of light ions by primary pions and
nucleons interacting in the beam pipe and silicon tracker

– The overhead in CPU time for ALICE of using FTFP_INCLXX instead of 
FTFP_BERT if about a factor of 2

● An elegant and efficient solution is provided by the 
“Generic Biasing” capability of Geant4

● It naturally allows a treatment per-region and per-particle
● No “occurrence” biasing, only “final-state operation” biasing

– Kept the natural cross sections, but changed final-state hadronic model

– It is “biasing” but with weight = 1.0 (as in analogous simulations)
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Neutrino Interactions
● Progress in modelling neutrino interactions inside Geant4

● Alternative to the interface to external GENIE package

● Neutrino – electron interactions included in G4 10.5
● Neutral- and charged-current for neutrinos and anti-neutrinos

of all 3 flavours (ν_e , ν_μ , ν_τ)
● Included in the gamma-lepto-nuclear physics constructor 

G4EmExtraPhysics (present in all physics lists);
it can be activated and steered via UI commands

● ν_μ – nuclear interactions will be included in G4 10.6
● Including also “anti_nu_mu”
● Included in the gamma-lepto-nuclear physics constructor 

G4EmExtraPhysics (present in all physics lists);
it can be activated and steered via UI commands

● In the future (after G4 10.6), can be extended to electron and tau 
neutrinos (and anti-neutrinos)
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Back up
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  Pion- showers: FTFP_BERT 

         G4 “10.5.ref07.tr3_6gev”       
10.5.ref07    

Note : conventional Birks treatment
                                (easier and no experimental h/e to fit !)     
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FTFP_BERT : Energy Response

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

21
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FTFP_BERT : Energy Width

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

22
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FTFP_BERT : Energy Resolution

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

23
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FTFP_BERT : Longitudinal Shape

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

24
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FTFP_BERT : Lateral Shape

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

25
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  Pion- showers: QGSP_BERT 

         G4 “10.5.ref07.tr3_6gev”       
10.5.ref07    

Note : conventional Birks treatment
                                (easier and no experimental h/e to fit !)     
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QGSP_BERT : Energy Response

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

27
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QGSP_BERT : Energy Width

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

28
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QGSP_BERT : Energy Resolution

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

29
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QGSP_BERT : Longitudinal Shape

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

30
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QGSP_BERT : Lateral Shape

π‾ on Fe-Sci π‾ on Cu-LAr

π‾ on W-LAr π‾ on Pb-LAr

31
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