Highlights from High-Energy Hadronic Physics

Alberto Ribon CERN EP/SFT

Outline

- Status of String models
 - FTF
 - QGS
- Status of Intranuclear Cascade models
 - BERT
 - BIC
 - INCLXX
- String-Cascade Transition Region
- Others
 - Interface to Fortran EPOS
 - Hadronic models per Region
 - Neutrino Interactions

String models

Status of FTF (Fritiof) model

- FTF in G4 10.5
 - Decided to release the development version
 - Improved thin-target description and wider hadronic showers, while our suggested new treatment of Birks quenching (i.e. fitting the Birks parameter from e/π data) can cope with the increased visible energy
 - After the 2018 Collaboration meeting, retuning of the strange quark sector of the Lund string fragmentation
- Changes on FTF after G4 10.5
 - Validation and refinement of nucleus-nucleus interactions (see an example in the next page)
 - Improved annihilation at rest of light anti-ions
 - Extended configuration interface for pion projectile parameters
 - Fixed a memory leak

Results of the improvements for E895 exp.

J. L. Klay et al., Phys. Rev C 68, 054905 (2003)

Charged pion production in 2A to 8A GeV central Au+Au Collisions,

Dashed lines are previous calculations, solid ones — current results.

Results become better for high energies, T > 6 GeV.

Status of QGS (Quark-Gluon-String) model

- QGS in G4 10.5
 - Decided to release the development version
 - Improved thin-target description, although narrower hadronic showers and increased visible energy
 - The increased visible energy can be compensated with our suggested new treatment of Birks quenching, i.e. fitting the Birks parameter from e/π
 - After the Collaboration meeting, improved the kaon treatment and performed further validation
- Changes on QGS after G4 10.5
 - Further validation
 - On-going code review
 - Fixed a bug in the computation of the transverse mass

FTF vs. QGS

- In Geant4 version 10.5, from thin-target data, we can generally conclude that QGS becomes competitive with FTF roughly above ~ 15 20 GeV (lab. projectile Ekin) whereas below this energy FTF is better
 - In the QGS-based physics lists, the transition between FTF and QGS is currently in the region [12 , 25] GeV
- QGS model is more theory-based than FTF, therefore QGS is expected to be more reliable at high energies
 - Above about ~0.5 TeV, where there are no clean thin-target data
 - But both models cannot be valid above few TeV
 - Because of the lack of gluon-jet production
 - Likely acceptable for LHC experiments, but not for FCC...
- QGS hadronic showers are narrower and with higher energy response than those of FTF

• FTF hadronic showers expected to agree better with test-beam data

7

String models for G4 10.6

- V. Uzhinsky is now working at CERN since 1st August, for 4 months – on the string models. His current main task is to extend the string models to charm and bottom hadrons i.e. transporting and/or producing heavy hadrons
 - Interest in FCC (as well as LHC) experiments to simulate hadronic interactions of highly boosted charmed and bottom hadrons in the beam pipe and first layers of the silicon tracker
 - Grichine's Glauber-Gribov nuclear cross sections for heavy hadrons will be available in the coming release G4 10.6
 - Unfortunately, no experimental data is available!
- This extension will be common for FTF and QGS for the string fragmentation part, whereas the string formation part will be done separately for FTF and QGS
 - Starting first with FTF; not yet clear how much will go in G4 10.6
 - Aida Galoyan will collect experimental data on charm production⁸

Intranuclear Cascade models

Bertini-like (BERT) model

- A few bug fixes
- Investigating possible improvements in multi-body phase generation

See Dennis' talks (plenary & parallel) for more details on Bertini

Binary Cascade (BIC) model

Stable, no development

INCLXX (Liege) model

- Main physics developments included in G4 10.5: improved strangeness and few nucleon removal
 - Introduced a new environmental variable G4INCLDATA, which should point to G4INCL1.0
- Several technical fixes included in G4 10.5
 - MT-irreproducibility fixed in the patch, G4 10.5.p01
- No new development expected for G4 10.6
 - Due to lack of man-power
 - Pending fixes on memory leaks
- FTFP_INCLXX is the preferred physics list for ALICE
 - It gives the best description of light ion production (d, t, 3He, α) by ~GeV pion and nucleon interactions on the beam pipe & tracker
 - But it is CPU costly (see later...)

Transition Region between String and Cascade models

Status up to G4 10.5.ref07

- [3, 12] GeV transition region between FTFP and BERT in FTFP_BERT physics list
 - Since G4 10.3 (December 2016)
 - The main motivation was to use more BERT and less FTFP to have lower energy response and wider hadronic showers
 - But thin-target data (HARP) prefer FTFP to BERT above ~ 5 GeV
 - This transition region is for the main hadrons pions, kaons, and nucleons – but for the other hadron types, different regions were used (mainly for historical reasons):
 - [2, 6] GeV for hyperons (Λ , Σ , Ξ , Ω)
 - [2, 4] GeV/nucleon for light ions (d, t, He3, α)
 - Transition region between BIC and FTFP was also different (again, mainly for historical reasons):
 - [9.5, 9.9] GeV for nucleons
 - For pions, either BERT, or BIC < 1.3 GeV, or BIC < 1.5 GeV was used depending on the physics list

Change in G4 10.5.ref08

- [3, 6] GeV new transition region between FTFP and BERT in FTFP_BERT physics list
 - Requested by CMS and supported by thin-target experimental data
 - Discussed and agreed at the Hadronic Group meeting on July 24th
 - Took the occasion to set consistently the same transition region for all hadrons (i.e. also for hyperons and light ions)
 - Reviewed also the transition for BIC (Binary Cascade model), for the physics list where it is used
 - [3, 6] GeV between FTFP and BIC for proton and neutron
 - For pions, BIC < 1.5 GeV, 1 GeV < BERT < 6 GeV, FTFP > 3 GeV
 - Left unchanged the transition region QGSP FTFP: [12, 25] GeV
 - Left unchanged the transition region in these 4 special P.L.:
 FTFP_BERT_ATL, INCLXX-based P.L., NuBeam, ShieldingM
 - See back up slides for the effects on hadronic showers

Others

Interface to Fortran EPOS

- The hadronic extended example Hadr02 in G4 10.5 includes an interface to CRMC (Cosmic Ray Monte Carlo) which offers the possibility to use generators like EPOS for final-state hadron-nucleus (and nucleus-nucleus) inelastic collisions at very high energies and created a (local) physics list which uses this interface
 - The Physics List is called CRMC_FTFP_BERT and the transition between CRMC and FTFP is currently set to be [100, 110] GeV
 - Main interest for FCC, to simulate jets above ~ 10 TeV
 - Hadron-nucleus interactions up to at least ~ 1 TeV (projectile kinetic energy in the Lab frame) are expected to be well described by the Geant4 string models (FTF & QGS); above this, missing gluon-jet production
 - Currently under testing in the context of FCC
 - At model-level we see fewer and more energetic secondaries in G4 FTF & QGS with respect to EPOS due to the lack of gluon-jet emissions
 - Needs a special version of CRMC adapted for Geant4 use...

Hadronic models per Region

- Geant4 physics list is defined globally, not per region
- Sometimes users would like to use a reference physics list, e.g. FTFP_BERT, but replacing a hadronic physics model in a region with a more precise model
 - Recent request from ALICE: to be able to use INCLXX in the Tracker region, while using BERT elsewhere
 - INCLXX describes better the production of light ions by primary pions and nucleons interacting in the beam pipe and silicon tracker
 - The overhead in CPU time for ALICE of using FTFP_INCLXX instead of FTFP_BERT if about a factor of 2
- An elegant and efficient solution is provided by the "Generic Biasing" capability of Geant4
 - It naturally allows a treatment per-region and per-particle
 - No "occurrence" biasing, only "final-state operation" biasing
 - Kept the natural cross sections, but changed final-state hadronic model 17
 - It is "biasing" but with weight = 1.0 (as in analogous simulations)

Neutrino Interactions

- Progress in modelling neutrino interactions inside Geant4
 - Alternative to the interface to external GENIE package
- Neutrino electron interactions included in G4 10.5
 - Neutral- and charged-current for neutrinos and anti-neutrinos of all 3 flavours (v_e , v_μ , v_τ)
 - Included in the gamma-lepto-nuclear physics constructor G4EmExtraPhysics (present in all physics lists);
 it can be activated and steered via UI commands
- $\nu \mu$ nuclear interactions will be included in G4 10.6
 - Including also "anti_nu_mu"
 - Included in the gamma-lepto-nuclear physics constructor G4EmExtraPhysics (present in all physics lists); it can be activated and steered via UI commands
 - In the future (after G4 10.6), can be extended to electron and tau neutrinos (and anti-neutrinos)

Back up

Pion-showers: FTFP_BERT

G4 "10.5.ref07.tr3_6gev" 10.5.ref07

Note: conventional Birks treatment (easier and no experimental h/e to fit!)

FTFP_BERT: Energy Response

FTFP_BERT: Energy Width

FTFP_BERT: Energy Resolution

FTFP_BERT: Longitudinal Shape

FTFP_BERT: Lateral Shape

Pion-showers: QGSP_BERT

G4 "10.5.ref07.tr3_6gev" 10.5.ref07

Note: conventional Birks treatment (easier and no experimental h/e to fit!)

QGSP_BERT : Energy Response

QGSP_BERT : Energy Width

QGSP_BERT : Energy Resolution

QGSP_BERT : Longitudinal Shape

QGSP_BERT : Lateral Shape

