
Geant4 in Atlas

Based on material prepared by Marilena Bandieramonte

On behalf of the Atlas Simulation Team

26th September 2019

For Geant4 Technical Forum of 18th January 2019 and
29th March 2019

John Apostolakis

Current production

• MC production is continuing with no major changes from the simulation side:

• Default production release uses G4 10.1 patch03, CLHEP 2.2, 64-bit, gcc 4.9,
SLC6, C++14. Some samples produced with gcc6.2.

• Compiling G4 as part of our nightly builds

• Significant number of updates to ATLAS user code (geometry and detector
response), including several speed ups.

• Still running tails of (much) older production campaigns: (G4 9.4+patches, 9.6p3)

• Changes in 2019:

• Moved Run 2 development branch to use Geant4 10.1.patch03.atlas07 (G4 Solid
updates – 4% speedup).

• Run 3 development has been based on Geant4 10.4.patch03.atlas01

2

Production plans

• Upcoming changes:

• Early testing of Geant4.10.5: We built AthSimulation with Geant4.10.5. It will be
used for testing purposes

• The next MC campaign (preparing for LHC Run 3) will use Geant4
10.4.patch03.atlas01 or later.

• we are testing Geant4 10.5 and will test Geant4 10.6 (when available). We will

decide in mid-2020 on the G4 version to use for MC to match 2021 data, with the
possibility of updating the G4 version again for MC produced in 2022.

3

Projection of CPU needs

• CPU consumption will

increase dramatically for HL-
LHC.

• Most of simulation will rely on

FastCaloSim, but full Geant4

sim will be heavily used

regardless (e.g. 25% of all
CPU time).

• Any performance

optimizations of ATLAS

simulation have a big impact
on the overall picture.

Plot from Davide Costanzo presented at: HL-LHC_Weekly-2018-12-04 4

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Code optimization and profiling with Intel tools

Intel’s VTune profiling tool can be easily used to thoroughly profile Athena.

5

parameterized_sin function calculates cosine as:

That’s very slow and it can be replaced with a parameterized cos calculation.
1-2% speedup

Geant4 debugging tools
All debugging plots are relatively automatically assembled into a web-page.

O(2000) plots, e.g.: G4 10.1.3.7 vs. G4 10.4.0.0.

6

Tool that plots histograms of various step-related
quantities:

• step length,

• step energy deposit,

• step kinetic energy,

• step position,

• created secondaries,

• ... As a function of:

https://mmuskinj.web.cern.ch/mmuskinj/G4Debugging/10_1_3_7_vs_10_4_0_0/all/

Range cut: e / γ processes

Electron Ionization respects the range cut.

Kinks in the secondary kinetic are clearly visible.
Photoelectric effect ignores range cuts by default.

Electrons down to eV are created and simulated.

w/o range cut range cut

7

Impact of enforcing range cut in γ processes

FCal1Absorber
Range cuts:
30 um
Energy thresholds :
116.102 keV

• Enforcing the range-cuts for
gamma processes in G4

• (turned off by default)

• 60% fewer electrons

created in total with the
range cut in ATLAS.

• The potential speedup of

the total simulation time

with range cuts for gammas
is 6-10%.

• Physics validation

undertaken with different
thresholds in MeV range

8

What kind of electrons are these?

• Most of electrons affected

by the new range cuts take

two steps (including the init

step). Some take three
steps.

• Two steps means that they

are created and

immediately die in the next
step.

• Range cuts are designed

exactly for such cases.

Impact on physics should be
very low.

9

Simple hit-count analysis
A simple hit count analysis show no significant difference in the number of hits in
calorimeters with the range cuts.

• However, this does not take

into the actual energy
deposit.

• Fewer particles are created

‘by construction’when range

cuts are applied so fewer hits
are expected.

• Full reconstruction needed

for confirmation (i.e. PhysVal),

but encouraging to see that

killing 60% of electrons has
such a low impact.

10

Performance optimization: Neutron Russian Roulette

E = 1 MeV:
50% neutrons
E = 10 MeV
90% neutrons

Most steps per
track around
E = 1 MeV.

Randomly kill the majority of neutrons below some energy and weight the energy
deposits of remaining neutrons accordingly:

Energy threshold (E),

Weight (w): neutrons below E are killed with P((w-1)/w) and weighted with w,

Weighting energy deposits is the tricky part (~25 modified files in Athena).

Avg. number of steps per track vs initial energyInitial kinetic energy distribution of neutrons 11

Expected speedup for NRR

Two setups tested:

test1: E = 1 MeV, w = 10,

test2: E = 10 MeV, w = 10.

Expected speedups of the total

simulation time are 10% and 20%
respectively.

A simple calorimeter hit-level analysis
show no significant discrepancies.

Physics validation undertaken for both
setups.

log(kinetic energy [MeV])

Initial kinetic energy distribution:

Red: plain G4,

Blue: RR with E = 1 MeV, w = 10,

Purple: RR with weighted
entries.

12

Complications in validations of biasing

Two recent validations of performance improvements have encountered ‘larger’ fluctuations in
results:

● Photon Russian Roulette

● e range cut for gamma processes in Geant4

Extra samples were simulated to check whether there are ‘real’ differences or not:
● Disjoint samples of 100k events (without optimizations)

● Samples with the same input events, but different random number seeds

A mechanism to reduce the ‘divergence’ of descendant tracks when secondary particles are killed

in a simulation (or other ‘history’ changes occur elsewhere in the shower tree upsetting the RNG
sequence) is expected to significantly reduce the effort required to undertake such validations.

We know of a trial implementation that could fulfill this stability by ‘pinning’ the RNG state to a
G4Track.

Request feasibility study for a G4 simulation mode that avoids fluctuations due to RNG divergence

from ‘downstream’ changes of particle history, e.g. from choice in secondary production and biasing
(RR.) in a different branch of the history (not in an ancestor particle.)

13

Other WIP items

• Geometry optimization effort continues after 2018 gains ~4% (report @Lund):

• Benchmarked VecGeom Solids using Geant4 10.4 and 10.5

• Using only Cons and Polycons solids from VecGeom gave a 2% -4%
speedup (in sample of 500t-tbar events.)

• Using all solids from VecGeom gave a small slowdown.

• “Big library”: static linking of single ATLAS library with static build of Geant4

• Ensuring that multi-threaded simulation (standalone Geant4MT and
AthenaMT) produces the exact output of single-threaded simulation

• Careful comparison of hits uncovered thread-safety issues

• Fixes regained performance totaling 2-5% level.

14

AthenaMT & G4MT validation

• Been able to run full multi-threaded G4 within AthenaMT, but outside of ISF, for some time
(AthSimulation 22.0.0 onwards):

• Inter-event parallelism rather than intra-event parallelism

• Memory savings come from shared geometry & XS tables

• Geant4MT requires thread-local initialization by design

• TBB – on which AthenaMT is based – prefers tasks to be “thread unaware” →

• tricky coupling between AthenaMT and Geant4MT

• Validation of output:

• Fixed: difference in G4 voxelization configuration between MT and ST (simulation diverged)

• Fixed: thread-safety in particle and vertex barcode service (~50%)

• Fixed: some events identical, others have differences in SCT hit IDs (~few%)

• Fixed: data-race in Calorimeter Sensitive Detector code (~1-3%)

• Fixed: simulation with CaloCalibrationHit (~50% of Dead material hits)

• Confirmed reproducibility of simulation with SUSY/Exotics G4Extensions enabled (Fixed

monopole code thread-unsafe issues)

• Stability fixes:

• Fixed: crashes due to missing thread-local G4 initialization when TBB spawns extra threads 15

Update on Readying MT for production

• Multi-threaded simulation is required for Run-4, but is certainly nice to have

for Run-3, in order to ensure that hardware with reduced memory per CPU
can be fully utilized.

• Intensive work to ensure that multi-threaded simulation (Geant4MT and
AthenaMT) reproduces the exact output of single-threaded simulation

• Careful comparison of hits uncovered thread-safety issues. Output Hits
now confirmed to be bitwise identical in tests of 5k ttbar events.

• Working hard to implement ISF-based G4 Multi-threaded simulation

• Need to fully understand initialization sequence in MT-mode, in order to
duplicate it in Athena/ISF simulation using TBB for worker tasks.

16

Summary

• Good progress on Optimizing Atlas Geant4 performance:

• Range cuts for secondary electrons originating from photons (6-10%)

• Validation Russian Roulette for neutrons (potential for 10-20%)

• General improvements of the existing code (few %).

• Further ‘technical’ improvements including the “Big Library” will be studied

• Challenges

• Validation of options which change RNG seeds is challenging

• Interest in simulation mode that reduces variance due to “history changes”

• Good progress on Validation of AthenaMT with Geant4MT:

• MT simulation is an important near term goal (LS2)

• Simulation in MT mode is working – validation is underway
• Good news for Geant4: no bugs were found (so far) on G4 side!

• Working on ensuring correct initialization for TBB-powered ISF MT simulation

17

Thanks for your attention.

18

Code optimization and profiling with Intel tools

Read

Write

Alloc

Concurrent

Threads

4th OpenLab-Intel hands-on workshop
• ~ 10 race-conditions

• ~ 2 lock hierarchy violations/deadlocks

• ~ 2-3 unhandled exceptions

19

https://indico.cern.ch/event/762142/
https://indico.cern.ch/event/762142/
https://indico.cern.ch/event/762142/

Case study: barcode service for multiple threads

• Barcode service provides unique particle and vertex barcodes:

• internal barcode counters are incremented each time a new barcode is requested

• returned barcode is simply the incremented value

• counters are reset at the beginning of each event

• Service was made thread-safe by:

• storing the counters in a tbb::concurrent_unordered_map with the std::thread::id as the
key and initializing a key-value pair for each thread, and

• replacing the BeginEvent incident used to trigger the counter reset with a
resetBarcodes() call inside the algorithm execute()

• Services in AthenaMT should be stateless

• The use of tools such as Intel Inspector is helping us to detect threading bugs

20

Geant4 simulation in ATLAS

‘Steps’ are the smallest units in a Geant4 simulation.

It is possible to intercept information about each step with User Actions:

21

Validation of the range cut for gamma processes in Geant4

• Running the simulation with this option gives an expected speedup of about 6-7% while the
impact on physics should be negligible by design.

• Range cuts are already turned on for the majority of other processes.

• Some simple physics tests were already performed and the agreement was good enough in
our opinion to proceed with the physics validation

• Range cuts for gamma processes (conv, phot, compt) are turned off by default in Geant4.
It is possible to turn them on with a simple postExec:

--postExec="from G4AtlasApps.SimFlags import simFlags; simFlags.G4Commands

+= ['/process/em/applyCuts true']"

22

Performance

The raw number of steps in same 1000 ttbar events has changed as follows:

§ electron steps: (7.56e9 - 5.88e9) / 7.56e9 = 22%

§ all steps: (2.64e10 - 2.46e10) / 2.64e10 = 6.8%

Assuming that CPU time is proportional to the number of steps a 6-7% speedup is expected.

Local test

Two jobs with 100 ttbar events were submitted locally on a quiet machine for timing purposes:

§ no range cut: Ave/Min/Max= 3.67(+- 1.52)/ 1.12/ 9.3[min]

§ w/ range cut: Ave/Min/Max= 3.46(+- 1.39)/ 1.2/ 8.57[min]

Local speedup is about 6%.

Grid jobs

10000 ttbar events were submitted on the GRID to perform the Calo Hits Analysis

jobs with the range cut are in general faster by about 10% in this example

23

24

Multiple ways to simulate:

- with all the tracks or

- replacing the (detailed) simulation of the red branch, or

- replacing the interaction that resulted in the red dashed particles.

To reduce fluctuations, what is needed is that the simulation of an unrelated branch of the

tree - (e.g. the blue one) is unaffected by the choices in simulating the red branch - even if

the red branch was simulated before the blue one.

‘Independence’ of tree branches

