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Current production

• MC production is continuing with no major changes from the simulation side:

• Default production release uses G4 10.1 patch03, CLHEP 2.2, 64-bit, gcc 4.9, 
SLC6, C++14.  Some samples produced with gcc6.2. 

• Compiling G4 as part of our nightly builds 

• Significant number of updates to ATLAS user code (geometry and detector 
response), including several speed ups.  

• Still running tails of (much) older production campaigns: ( G4 9.4+patches, 9.6p3)

• Changes in 2019: 

• Moved Run 2 development branch to use Geant4 10.1.patch03.atlas07 (G4 Solid 
updates – 4% speedup). 

• Run 3 development has been based on Geant4 10.4.patch03.atlas01
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Production plans

• Upcoming changes: 

• Early testing of Geant4.10.5: We built AthSimulation with Geant4.10.5. It will be 
used for testing purposes 

• The next MC campaign (preparing for LHC Run 3) will use Geant4 
10.4.patch03.atlas01 or later.

• we are testing Geant4 10.5 and will test Geant4 10.6 (when available). We will 

decide in mid-2020 on the G4 version to use for MC to match 2021 data, with the 
possibility of updating the G4 version again for MC produced in 2022.
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Projection of CPU needs

• CPU consumption will 

increase dramatically for HL-
LHC.

• Most of simulation will rely on 

FastCaloSim, but full Geant4 

sim will be heavily used 

regardless (e.g. 25% of all 
CPU time).

• Any performance 

optimizations of ATLAS 

simulation have a big impact 
on the overall picture.

Plot from Davide Costanzo presented at: HL-LHC_Weekly-2018-12-04 4

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


Code optimization and profiling with Intel tools 

Intel’s VTune profiling tool can be easily used to thoroughly profile Athena.
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parameterized_sin function calculates cosine as:

That’s very slow and it can be replaced with a parameterized cos calculation.
1-2% speedup



Geant4 debugging tools
All debugging plots are relatively automatically assembled into a web-page. 

O(2000) plots, e.g.: G4 10.1.3.7 vs. G4 10.4.0.0.
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Tool that plots histograms of various step-related 
quantities:

• step length,

• step energy deposit,

• step kinetic energy,

• step position,

• created secondaries,

• ... As a function of: 

https://mmuskinj.web.cern.ch/mmuskinj/G4Debugging/10_1_3_7_vs_10_4_0_0/all/


Range cut: e / γ processes

Electron Ionization respects the range cut.

Kinks in the secondary kinetic are clearly visible.
Photoelectric effect ignores range cuts by default.

Electrons down to eV are created and simulated.

w/o range cut range cut
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Impact of enforcing range cut in γ processes

FCal1Absorber
Range cuts:
30 um 
Energy thresholds :
116.102 keV

• Enforcing the range-cuts for 
gamma processes in G4

• (turned off by default)

• 60% fewer electrons 

created in total with the 
range cut in ATLAS.

• The potential speedup of 

the total simulation time 

with range cuts for gammas 
is 6-10%.

• Physics validation 

undertaken with different 
thresholds in MeV range
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What kind of electrons are these?

• Most of electrons affected 

by the new range cuts take 

two steps (including the init 

step). Some take three 
steps.

• Two steps means that they 

are created and 

immediately die in the next 
step.

• Range cuts are designed 

exactly for such cases.

Impact on physics should be 
very low.
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Simple hit-count analysis
A simple hit count analysis show no significant difference in the number of hits in 
calorimeters with the range cuts.

• However, this does not take 

into the actual energy 
deposit.

• Fewer particles are created 

‘by construction’when range 

cuts are applied  so fewer hits 
are expected.

• Full reconstruction needed 

for confirmation (i.e. PhysVal), 

but encouraging to see that 

killing 60% of electrons has 
such a low impact.
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Performance optimization: Neutron Russian Roulette

E = 1 MeV:
50% neutrons
E = 10 MeV
90% neutrons

Most steps per
track around
E = 1 MeV.

Randomly kill the majority of neutrons below some energy and weight the energy 
deposits of remaining neutrons accordingly:

Energy threshold (E),

Weight (w): neutrons below E are killed with P((w-1)/w) and weighted with w,

Weighting energy deposits is the tricky part (~25 modified files in Athena).

Avg. number of steps per track vs initial energyInitial kinetic energy distribution of neutrons 11



Expected speedup for NRR

Two setups tested:

test1: E = 1 MeV, w = 10,

test2: E = 10 MeV, w = 10.

Expected speedups of the total

simulation time are 10% and 20% 
respectively.

A simple calorimeter hit-level analysis 
show no significant discrepancies. 

Physics validation undertaken for both 
setups.

log( kinetic energy [MeV] )

Initial kinetic energy distribution:

Red: plain G4,

Blue: RR with E = 1 MeV, w = 10,

Purple: RR with weighted 
entries.
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Complications in validations of biasing

Two recent validations of performance improvements have encountered ‘larger’ fluctuations in 
results:

● Photon Russian Roulette

● e range cut for gamma processes in Geant4

Extra samples were simulated to check whether there are ‘real’ differences or not:
● Disjoint samples of 100k events (without optimizations)

● Samples with the same input events, but different random number seeds

A mechanism to reduce the ‘divergence’ of descendant tracks when secondary particles are killed 

in a simulation (or other ‘history’ changes occur elsewhere in the shower tree upsetting the RNG 
sequence) is expected to significantly reduce the effort required to undertake such validations.

We know of a trial implementation that could fulfill this stability by ‘pinning’ the RNG state to a 
G4Track. 

Request feasibility study for a G4 simulation mode that avoids fluctuations due to RNG divergence 

from ‘downstream’ changes of particle history, e.g. from choice in secondary production and biasing 
(RR.) in a different branch of the history (not in an ancestor particle.)
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Other WIP items

• Geometry optimization effort continues after 2018 gains ~4% (report @Lund):

• Benchmarked VecGeom Solids using Geant4 10.4 and 10.5 

• Using only Cons and Polycons solids from VecGeom gave a 2% -4% 
speedup (in sample of 500t-tbar events.)

• Using all solids from VecGeom gave a small slowdown.

• “Big library”: static linking of single ATLAS library with static build of Geant4

• Ensuring that multi-threaded simulation (standalone Geant4MT and 
AthenaMT) produces the exact output of single-threaded simulation

• Careful comparison of hits uncovered thread-safety issues 

• Fixes regained performance totaling 2-5% level.
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AthenaMT & G4MT validation

• Been able to run full multi-threaded G4 within AthenaMT, but outside of ISF, for some time
(AthSimulation 22.0.0 onwards): 

• Inter-event parallelism rather than intra-event parallelism 

• Memory savings come from shared geometry & XS tables 

• Geant4MT requires thread-local initialization by design 

• TBB – on which AthenaMT is based – prefers tasks to be “thread unaware” → 

• tricky coupling between AthenaMT and Geant4MT

• Validation of output:

• Fixed: difference in G4 voxelization configuration between MT and ST (simulation diverged)

• Fixed: thread-safety in particle and vertex barcode service (~50%)

• Fixed: some events identical, others have differences in SCT hit IDs (~few%)

• Fixed: data-race in Calorimeter Sensitive Detector code (~1-3%)

• Fixed: simulation with CaloCalibrationHit (~50% of Dead material hits)

• Confirmed reproducibility of simulation with SUSY/Exotics G4Extensions enabled (Fixed 

monopole code thread-unsafe issues)

• Stability fixes: 

• Fixed: crashes due to missing thread-local G4 initialization when TBB spawns extra threads 15



Update on Readying MT for production

• Multi-threaded simulation is required for Run-4, but is certainly nice to have 

for Run-3, in order to ensure that hardware with reduced memory per CPU 
can be fully utilized.

• Intensive work to ensure that multi-threaded simulation (Geant4MT and 
AthenaMT) reproduces the exact output of single-threaded simulation

• Careful comparison of hits uncovered thread-safety issues. Output Hits 
now confirmed to be bitwise identical in tests of 5k ttbar events.

• Working hard to implement ISF-based G4 Multi-threaded simulation

• Need to fully understand initialization sequence in MT-mode, in order to 
duplicate it in Athena/ISF simulation using TBB for worker tasks.
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Summary

• Good progress on Optimizing Atlas Geant4 performance:

• Range cuts for secondary electrons originating from photons (6-10%)

• Validation Russian Roulette for neutrons (potential for 10-20%)

• General improvements of the existing code (few %).

• Further ‘technical’ improvements including the “Big Library” will be studied

• Challenges

• Validation of options which change RNG seeds is challenging

• Interest in simulation mode that reduces variance due to “history changes”

• Good progress on Validation of AthenaMT with Geant4MT:

• MT simulation is an important near term goal (LS2)

• Simulation in MT mode is working – validation is underway
• Good news for Geant4: no bugs were found (so far) on G4 side! 

• Working on ensuring correct initialization for TBB-powered ISF MT simulation
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Thanks for your attention.
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Code optimization and profiling with Intel tools 

Read

Write  

Alloc 

Concurrent 

Threads

4th OpenLab-Intel hands-on workshop
• ~ 10 race-conditions

• ~ 2 lock hierarchy violations/deadlocks

• ~ 2-3 unhandled exceptions
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https://indico.cern.ch/event/762142/
https://indico.cern.ch/event/762142/
https://indico.cern.ch/event/762142/


Case study: barcode service for multiple threads 

• Barcode service provides unique particle and vertex barcodes: 

• internal barcode counters are incremented each time a new barcode is requested 

• returned barcode is simply the incremented value

• counters are reset at the beginning of each event 

• Service was made thread-safe by: 

• storing the counters in a tbb::concurrent_unordered_map with the std::thread::id as the 
key and initializing a key-value pair for each thread, and

• replacing the BeginEvent incident used to trigger the counter reset with a 
resetBarcodes() call inside the algorithm execute() 

• Services in AthenaMT should be stateless

• The use of tools such as Intel Inspector is helping us to detect threading bugs
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Geant4 simulation in ATLAS

‘Steps’ are the smallest units in a Geant4 simulation.

It is possible to intercept information about each step with User Actions:
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Validation of the range cut for gamma processes in Geant4

• Running the simulation with this option gives an expected speedup of about 6-7% while the 
impact on physics should be negligible by design. 

• Range cuts are already turned on for the majority of other processes.

• Some simple physics tests were already performed and the agreement was good enough in 
our opinion to proceed with the physics validation

• Range cuts for gamma processes (conv, phot, compt) are turned off by default in Geant4.
It is possible to turn them on with a simple postExec:

--postExec="from G4AtlasApps.SimFlags import simFlags; simFlags.G4Commands 

+= ['/process/em/applyCuts true']"
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Performance

The raw number of steps in same 1000 ttbar events has changed as follows:

§ electron steps: (7.56e9 - 5.88e9) / 7.56e9 = 22% 

§ all steps: (2.64e10 - 2.46e10) / 2.64e10 = 6.8%

Assuming that CPU time is proportional to the number of steps a 6-7% speedup is expected.

Local test

Two jobs with 100 ttbar events were submitted locally on a quiet machine for timing purposes:

§ no range cut: Ave/Min/Max= 3.67(+- 1.52)/ 1.12/ 9.3[min]

§ w/ range cut: Ave/Min/Max= 3.46(+- 1.39)/ 1.2/ 8.57[min]

Local speedup is about 6%.

Grid jobs

10000 ttbar events were submitted on the GRID to perform the Calo Hits Analysis

jobs with the range cut are in general faster by about 10% in this example
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Multiple ways to simulate: 

- with all the tracks or 

- replacing the (detailed) simulation of the red branch, or 

- replacing the interaction that resulted in the red dashed particles.

To reduce fluctuations, what is needed is that the simulation of an unrelated branch of the 

tree - (e.g. the blue one) is unaffected by the choices in simulating the red branch - even if 

the red branch was simulated before the blue one.

‘Independence’ of tree branches


