VectorFlow

A. Gheata
24t Geant4 Collaboration Meeting
23-27 September 2019
Jefferson Lab

The ic

workflow

A way to generalize vectorization by
passing vectors of data to functions
rather than rely on inner loops.

A vector adapter?

Idea originating from GeantV
workflow, but generalized as
templated APl usable in any
workflow

Do not provide an implementation,
but rather a recipe and examples on
how to do it

Using VecCore as underlying
vectorization library

ea:. vector components in a scalar

ALGORITHM
HANDLER

FILTER &
TRANSFORM

How it works

* A FILTER step to select scalar states to be processed.

* An ACCUMULATION step buffers the scalar states holding the data of
interest

* A GATHER step in aligned memory to prepare the data needed for
SIMD processing.

* A VECTORIZATION step, which integrates with VecCore services.

* A SCATTER step to re-integrate the output into the framework data
flow.

Supported workflows

Pipeline flow:

@——» Task A

—(—

Complex flow:

State is “propagated”
through the graph according
to runtime decisions

Task B

fork

Task C \
Task A — Task B |

— "@—’ Task C " done

Task D

recurse —/

* Different flows can be inter-connected
* The data management introduces copy overheads, vectorization has to worth it

early return

Flow re-integration

Stack of pop(1)

e.g. "track Algorithm A

Algorithm B

Algorithm C

Stack of pop(1)

states

Algorithm A

h(1
Accumulating push(1)

input stack

Stack of NSO

g Algorithm B_v

push(N)

op(1
Stack of BUSIJEN) R Algorithm C

Accumulating
output stack(s)

Pop also from
“secondary”
stacks

Implementation

* Implemented VectorFlow interfaces in the context of GSoC 2019

e Student: Arturo Garza Rodriguez
* Mentors: G. Amadio and A. Gheata

* New lightweight library now available:
https://github.com/agheata/vectorflow

e Simple design around the concept of “Work” that can have a scalar and a
vectorized implementation

* In particular the goal is to test this for components in the Geant4
workflow

https://github.com/agheata/vectorflow

Work interface: Base class that provides
interfaces to scalar and vector work.

* Interface to arbitrary user algorithm providing abstract interfaces for
scalar and vector “Execute” methods

* Templated on user-defined data and container

* Work can have “clients” and and can dispatch the processed data to
any of those

SetVectorMode() Client #0

*
Execute(Data *) Client #1
Work<Data, DataContainer> .
Client #2

Execute(DataContainer const &)
Client #3

DataContainer

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/Work.h

FLOW interface - Base class that provides
support to the different types of flows

* Add each stage to the workflow via AddWork.

* Set each stage to be executed either in scalar or vector mode via
SetVectorMode.

* Two flows to support any variant type of simulation workflows were
proposed: the PIPELINE flow & the COMPLEX flow.

Work #0

Work #1
Flow<Data, DataContainer, NSeqg>
Work #2

Work #3

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/Flow.h

Pipeline flow

AddData(Data*)

PipelineFlow : Flow

DataContainer

fBasket

Work #0
Work #1
Work #2

Work #3

Execute()

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/PipelineFlow.h

Complex flow

ComplexFlow : Flow

Basket #0
Basket #1
>_

Basket #2
Basket #3

Work #0
' Work #1 .
Work #2

Work #3

Execute()
until nothing left in
baskets

10

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/ComplexFlow.h

EXAMPLE

COMPLEX FLOW: Generate + Propagate

Each layer is translated to a VectorFlow task that

propagates a vector of tracks (previously gathered in the
correct format for SIMD processing).

Each particle track can be propagated to an inner or outer
layer in the tube, i.e. a task dispatches data to the other
tasks' containers.

If tracks are propagated outside the geometry, they are
scattered back to the original data flow.

The flow continues its execution until as long as there is
still data in the buffers.

[
B
|'/+\)
/ P Q
'/” e
I | |
. |', ".‘ '\ A / ,',-' ’;' / ';
"\:\ — / |
\, N /)
\\ :-:‘_'_','/

Up to ~2.0x speed-up in AVX2 processor, even though
inherent overhead due to data transformations.

11

Prototyping VectorFlow with Geant4
components

* Requires stateless transport engine — ongoing work (see talk of WP)

* Moving the state in the G4Track
* Done already for managers (WP)

* Pause/resume for a given track w/o overhead

* Prototyping the vectorflow for the performance-critical components
* Field propagation, MSC

