
VectorFlow
A. Gheata

24th Geant4 Collaboration Meeting
23-27 September 2019

Jefferson Lab



The idea: vector components in a scalar 
workflow
A way to generalize vectorization by
passing vectors of data to functions
rather than rely on inner loops.

A vector adapter?

• Idea originating from GeantV
workflow, but generalized as
templated API usable in any
workflow

• Do not provide an implementation,
but rather a recipe and examples on
how to do it

• Using VecCore as underlying
vectorization library

2



How it works

• A FILTER step to select scalar states to be processed.
• An ACCUMULATION step buffers the scalar states holding the data of 

interest
• A GATHER step in aligned memory to prepare the data needed for 

SIMD processing.
• A VECTORIZATION step, which integrates with VecCore services.
• A SCATTER step to re-integrate the output into the framework data 

flow.

3



Supported workflows

• Different flows can be inter-connected
• The data management introduces copy overheads, vectorization has to worth it

4



Flow re-integration

Algorithm Ae.g. “track”

Stack of 
states

Stack of 
states

S”

S’

S

Algorithm B

Algorithm C

S

Algorithm A

Stack of 
states

S’

Algorithm B_v

Algorithm C

pop(1)

pop(N)

push(1)

pop(1)

Stack of 
states

(S1..SN)push(N)

pop(1)

Accumulating 
input stack

Accumulating 
output stack(s)

Pop also from 
“secondary” 
stacks

5



Implementation

• Implemented VectorFlow interfaces in the context of GSoC 2019
• Student: Arturo Garza Rodriguez
• Mentors: G. Amadio and A. Gheata

• New lightweight library now available: 
https://github.com/agheata/vectorflow
• Simple design around the concept of “Work” that can have a scalar and a 

vectorized implementation

• In particular the goal is to test this for components in the Geant4 
workflow

6

https://github.com/agheata/vectorflow


Work interface: Base class that provides 
interfaces to scalar and vector work.
• Interface to arbitrary user algorithm providing abstract interfaces for 

scalar and vector “Execute” methods
• Templated on user-defined data and container
• Work can have “clients” and and can dispatch the processed data to 

any of those

Work<Data, DataContainer>
Execute(Data *)

Execute(DataContainer const &)

Client #0

Client #1

Client #2

Client #3
DataContainer

SetVectorMode()

7

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/Work.h


FLOW interface - Base class that provides 
support to the different types of flows
• Add each stage to the workflow via AddWork.
• Set each stage to be executed either in scalar or vector mode via 
SetVectorMode.
• Two flows to support any variant type of simulation workflows were 

proposed: the PIPELINE flow & the COMPLEX flow.

Flow<Data, DataContainer, NSeq>

Work #0

Work #1

Work #2

Work #3

8

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/Flow.h


Pipeline flow

PipelineFlow : Flow

Work #0

Work #1

Work #2

Work #3

DataContainer
fBasketAddData(Data*)

Execute()

9

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/PipelineFlow.h


Complex flow

ComplexFlow : Flow

Work #0

Work #1

Work #2

Work #3

Execute()
until nothing left in 
baskets

Basket #0

Basket #1
Basket #2

Basket #3

10

https://github.com/agheata/vectorflow/blob/master/interface/inc/vectorFlow/ComplexFlow.h


EXAMPLE

• COMPLEX FLOW: Generate + Propagate

• Each layer is translated to a VectorFlow task that
propagates a vector of tracks (previously gathered in the
correct format for SIMD processing).

• Each particle track can be propagated to an inner or outer
layer in the tube, i.e. a task dispatches data to the other
tasks' containers.

• If tracks are propagated outside the geometry, they are
scattered back to the original data flow.

• The flow continues its execution until as long as there is
still data in the buffers.

Up to ~2.0x speed-up in AVX2 processor, even though 
inherent overhead due to data transformations.

11



Prototyping VectorFlow with Geant4 
components
• Requires stateless transport engine – ongoing work (see talk of WP)
• Moving the state in the G4Track

• Done already for managers (WP)

• Pause/resume for a given track w/o overhead
• Prototyping the vectorflow for the performance-critical components
• Field propagation, MSC

12


