Status of Geant4 Hadronic Physics

Alberto Ribon CERN EP/SFT

Dennis Wright SLAC

Outline

- Highlights of Geant4 10.5
- Status of development
 - In preparation for the December release, G4 10.6
- Selected topics of interest for JLab
 - Gamma- and lepton-nuclear interactions in Geant4

Hightlights of G4 10.5

String models

- FTF (Fritiof) & QGS (Quark Gluon String)
 - Released the latest development version developed since G4 10.2 but not included in 10.3 and 10.4, to keep hadronic showers stable
 - Note that snapshots of these developments have been made available in previous beta releases: G4 10.3.beta, 10.4.beta and 10.5.beta
 - Development driven to improve the desciption of thin-target data
 - No problems found in the π° production which could explain the observed higher energy response of hadronic showers in calorimeters
 - Reviewed Birks quenching: inconsistent use of Birks coefficient taken from publications where no-delta-ray emissions were assumed...

Intra-nuclear Cascade models

- Bertini-like (BERT)
 - Extended strange pair production channels to multibody final states
 - 6,7,8 and 9 bodies
 - A few important fixes (affecting the physics results)
- Binary (BIC)
 - Stable, no developments
- Liege (INCLXX)
 - Improved strangeness and the few-nucleon-removal
 - Fixed various bugs
 - New data-set : G4INCL1.0

Precompound / de-excitation models

- Coherent use of the same parameterisation of level density and pairing correction between all models in de-excitation and precompound
- Several code improvements
- New data-set: PhotonEvaporation5.3

Radioactive Decay model

- Improved electron capture
- New data-set: RadioactiveDecay5.3

ParticleHP & LEND models

Bug fixes, no new development

Others

ABLA

- Extended to hypernuclei
- Can be used as an alternative de-excitation model for INCLXX
- Elastic scattering
 - Extended the high-energy applicability of G4DiffuseElastic and G4NuclNuclDiffuseElastic up to 100 TeV

"Extensions"

- Made easier to change the high-energy limit of applicability of hadronic physics (which is still 100 TeV by default)
 - Requested by a cosmic ray experiment (DAMPE)
- Possible to run Geant4, in the whole energy range of applicability, for transuranic elements
 - Interest from an ADS (Accelerator Driven System) project (MYRRHA)

Physics Lists & Validation

- Both QGSP_BIC_HP and QGSP_BIC_AllHP use EM Opt4
 - Instead of EM Opt0 as before
- geant-val.cern.ch
 - Our validation and regression testing tool which we rely on for all Geant4 releases (public, patches, development)
 - Started with the hadronic showers in SimplifiedCalo, and then extended to many other applications, such as:
 - Thin-target testing-suite for string models, cross sections, TARC, FragTest (hadron-therapy), simplified CMS ECAL+HCAL, etc.
 - Many EM tests: fluctuation, bremsstrahlung, electron scattering, dE/dx, multiple scattering, attenuation, Bragg peak, Fano cavity, medical physics, simplified EM calorimeters, etc.

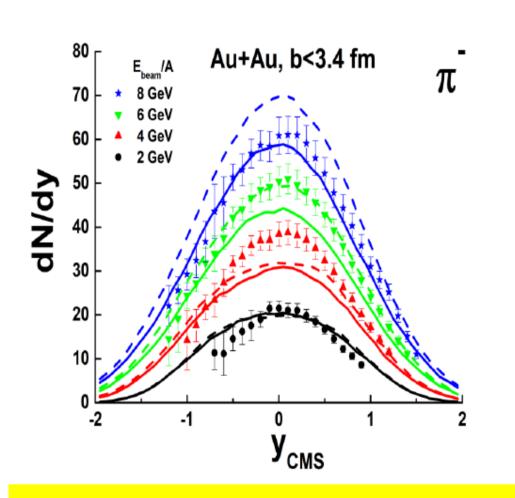
Hadronic showers

- Hadronic showers in G4 10.5 changed significantly
 - Few per-cent higher energy response
 - Smaller fluctuations of energy response
 - Wider lateral shapes

mostly due to the **development in string models** (improved description of thin-target data)

- The first two aspects (energy response mean and fluctuations) are affected by the Birks quenching: we recommend a new treatment
 - Fit the Birks coefficient from the test-beam data on the ratio h/e, at one beam energy arbitrarily chosen

Current Developments


String models


- Changes on FTF after G4 10.5
 - Validation and refinement of nucleus-nucleus interactions (see an example in the next page)
 - Improved annihilation at rest of light anti-ions
 - Extended configuration interface for pion projectile parameters
 - Fixed a memory leak
- Changes on QGS after G4 10.5
 - Further validation
 - On-going code review
 - Fixed a bug in the computation of the transverse mass

Results of the improvements for E895 exp.

J. L. Klay et al., Phys. Rev C 68, 054905 (2003)

Charged pion production in 2A to 8A GeV central Au+Au Collisions,

Dashed lines are previous calculations, solid ones — current results.

Results become better for high energies, T > 6 GeV.

FTF vs. QGS

- In Geant4 version 10.5, from thin-target data, we can generally conclude that QGS becomes competitive with FTF roughly above ~ 15 20 GeV (lab. projectile Ekin) whereas below this energy FTF is better
 - In the QGS-based physics lists, the transition between FTF and QGS is currently in the region [12 , 25] GeV
- QGS model is more theory-based than FTF, therefore QGS is expected to be more reliable at high energies
 - Above about ~0.5 TeV, where there are no clean thin-target data
 - But both models cannot be valid above few TeV
 - Because of the lack of gluon-jet production
 - Likely acceptable for LHC experiments, but not for FCC...
- QGS hadronic showers are narrower and with higher energy response than those of FTF

• FTF hadronic showers expected to agree better with test-beam data

String models for G4 10.6

- Started the activity to extend the string models to charm and bottom hadrons i.e. transporting and producing heavy hadrons
 - Interest in FCC (as well as LHC) experiments to simulate hadronic interactions of highly boosted charmed and bottom hadrons in the beam pipe and first layers of the silicon tracker
 - Geant4 Glauber-Gribov nuclear cross sections for heavy hadrons will be available in the coming release G4 10.6
 - Unfortunately, no experimental data is available!
- This extension will be common for FTF and QGS for the string fragmentation part, whereas the string formation part will be done separately for FTF and QGS
 - Starting first with FTF; not yet clear how much will go in G4 10.6
 - Plan to collect available data on charm production

Intra-nuclear Cascade models

- Bertini-like (BERT)
 - A few bug fixes
 - Investigating possible improvements in multi-body phase generation
- Binary (BIC)
 - Stable, no developments
- Liege (INCLXX)
 - MT-irreproducibility fixed in the patch, G4 10.5.p01
 - No new development expected for G4 10.6
 - Due to lack of man-power
 - Pending fixes on memory leaks
 - FTFP_INCLXX is the preferred physics list for ALICE
 - It gives the best description of light ion production (d, t, 3He, α)
 by ~GeV pion and nucleon interactions on the beam pipe & tracker
 - But it is CPU costly (see later...)

Hadronic models per Region

- Geant4 physics list is defined globally, not per region
- Sometimes users would like to use a reference physics list, e.g. FTFP_BERT, but replacing a hadronic physics model in a region with a more precise model
 - Recent request from ALICE: to be able to use INCLXX in the Tracker region, while using BERT elsewhere
 - INCLXX describes better the production of light ions by primary pions and nucleons interacting in the beam pipe and silicon tracker
 - The overhead in CPU time for ALICE of using FTFP_INCLXX instead of FTFP_BERT if about a factor of 2
- An elegant and efficient solution is provided by the "Generic Biasing" capability of Geant4
 - It naturally allows a treatment per-region and per-particle
 - No "occurrence" biasing, only "final-state operation" biasing
 - Kept the natural cross sections, but changed final-state hadronic model 16
 - It is "biasing" but with weight = 1.0 (as in analogous simulations)

String and Cascade cross-over

- Transition region between FTFP and BERT in FTFP_BERT physics list
 - [3,12] GeV in G4 10.3, 10.4, 10.5
 - The main motivation was to use more BERT and less FTFP to have lower energy response and wider hadronic showers
 - But thin-target data (HARP) prefer FTFP to BERT above ~ 5 GeV
 - [3,6] GeV new in G4 10.6 (scheduled for December)
 - Requested by CMS and supported by thin-target experimental data
 - Took the occasion to set consistently the same transition region for all hadrons (i.e. also for hyperons and light ions)
 - Reviewed also the transition for BIC (Binary Cascade model)
 - [3, 6] GeV between FTFP and BIC for proton and neutron
 - For pions, BIC < 1.5 GeV , 1 GeV < BERT < 6 GeV , FTFP > 3 GeV
 - Left unchanged the transition region QGSP FTFP : [12, 25] GeV
 - Left unchanged the transition region in these 4 special physics lists:
 FTFP_BERT_ATL, INCLXX-based P.L., NuBeam, ShieldingM

Interface to Fortran EPOS

- The hadronic extended example Hadr02 in G4 10.5 includes an interface to CRMC (Cosmic Ray Monte Carlo) which offers the possibility to use generators like EPOS for final-state hadron-nucleus (and nucleus-nucleus) inelastic collisions at very high energies and created a (local) physics list which uses this interface
 - The Physics List is called CRMC_FTFP_BERT and the transition between CRMC and FTFP is currently set to be [100, 110] GeV
 - Main interest for FCC, to simulate jets above ~ 10 TeV
 - Hadron-nucleus interactions up to at least ~ 1 TeV (projectile kinetic energy in the Lab frame) are expected to be well described by the Geant4 string models (FTF & QGS); above this, missing gluon-jet production
 - Currently under testing in the context of FCC
 - At model-level we see fewer and more energetic secondaries in G4 FTF & QGS with respect to EPOS due to the lack of gluon-jet emissions
 - Needs a special version of CRMC adapted for Geant4 use...

De-excitation models: Fermi Breakup

- For disintegration of light nuclei (Z < 9, A < 17)
- Breakup into 2-, 3- and 4-body final states
- Implementation
 - G4 10.4 and earlier: hard-coded data to precompute decay probabilities
 - 260 final states from data files and 399 reactions
 - G4 10.5 and later: new version G4FermiBreakupVI
 - 380 final states and 991 reactions
 - Fully based on data in G4GAMMALEVELDATA
 - Only binary decay chains considered, with standard Coulomb barrier calculation
 - Slightly slower than the old version

De-excitation models: Evaporation

G4Evaporation

- Simplified integration of inverse cross sections and final state sampling
 - Some speed-up
- Optimized initialization, reduced memory churn

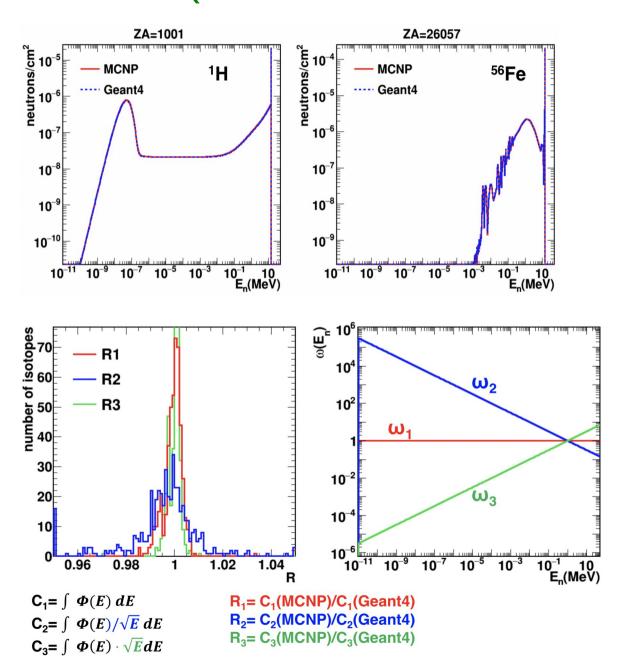
G4PhotonEvaporation

- If no transition data is found in database for a level, go to the nearest level
 - Was ground state in past
- Corrected internal conversion probability for some isotopes

De-excitation models: Level Density

- For high nuclear excitation values, nuclear levels are too many and too close together to deal with them separately, therefore the level density is parameterized
 - Before G4 10.5, $\rho_L = 0.1 * A$
 - New parameterization
 - Based on fits to data (A. Mengoni, Yu. Nakajima JNST 31 (1994) 151)
 - $\rho_L = \alpha * A * (1 + \beta / A^1/3)$
 - Same parameterization must be used for fission, evaporation and photon evaporation to get reasonable results
 - New option in G4DeexPrecoParameters to get/set LevelDensityFlag
 - New default $\rho_L = 0.075 * A$

ParticleHP (1/3)


- By default tries to conserve energy-momentum event-by-event
 - Works sometimes, but not in general
- Current ParticleHP code often makes common sense modifications to get energy conservation, but this often destroys agreement with ENDF energy distributions
 - ENDF database rules deal only with distributions
 - Violating these rules can cause unexpected results (like extra gammas) which make validation difficult
 - Environmental variables exist to "fix up" ENDF
- Quick and dirty fix:
 - export G4NEUTRONHP_DO_NO_ADJUST_FINAL_STATE = 1
 - export G4PHP_DO_NOT_ADJUST_FINAL_STATE = 1

ParticleHP (2/3)

Better idea:

- Remove environmental variables
- Refactor code for two modes of operation
 - ENDF mode: no event-by-event energy-momentum conservation is forced
 - Energy-momentum conservation forced do not use ENDF data for final state, use a final-state model instead
- This choice follows ENDF rules
 - Better validation results and cross-code (MCNP) comparisons
- Methods for ENDF mode fairly easy to do
- Significant work to add new methods for modeling the final state in energy conservation mode

ParticleHP (3/3) Verification (E. Mendoza & D. Cano-Ott)

Radioactive Decay

- Spontaneous fission channel added
 - Competes with all other channels: α , β , IC , IT
 - Gets branching ratio from ENSDF database (RadioactiveDecay5.3)
 - Uses the Livermore spontaneous fission model already in Geant4
 - G4fissionEvent : currently valid only for Cf isotopes
 - Neutrons and gammas generated in final-state
 - Not fragments, but could be added in the future

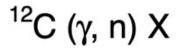
Electron capture

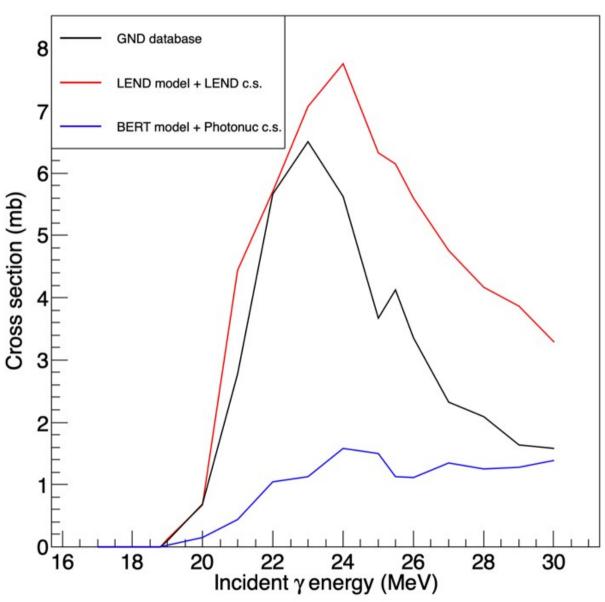
- N-shell capture added to G4ECDecay
 - Machinery is there for all nuclides; but, currently, data for only a few are included in RadioactiveDecay5.3
- Subshell capture ratios added
 - Tables of PL2/PL1, PM2/PM1 and PN2/PN1 added to RadioactiveDecay5.3
 - Based on bound electron radial wave amplitude from Bambynek (1977)
 - Partial probabilities of subshell capture calculated from above tables

Neutrino Interactions

- Progress in modelling neutrino interactions inside Geant4
 - Alternative to the interface to external GENIE package
- Neutrino electron interactions included in G4 10.5
 - Neutral- and charged-current for neutrinos and anti-neutrinos of all 3 flavours (v_e , v_μ , v_τ)
 - Included in the gamma-lepto-nuclear physics constructor G4EmExtraPhysics (present in all physics lists);
 it can be activated and steered via UI commands
- $\nu \mu$ nuclear interactions will be included in G4 10.6
 - Including also "anti_nu_mu"
 - Included in the gamma-lepto-nuclear physics constructor G4EmExtraPhysics (present in all physics lists); it can be activated and steered via UI commands
 - In the future (after G4 10.6), can be extended to electron and tau neutrinos (and anti-neutrinos)

Selected Topics


Gamma- and Lepton-Nuclear interactions in G4

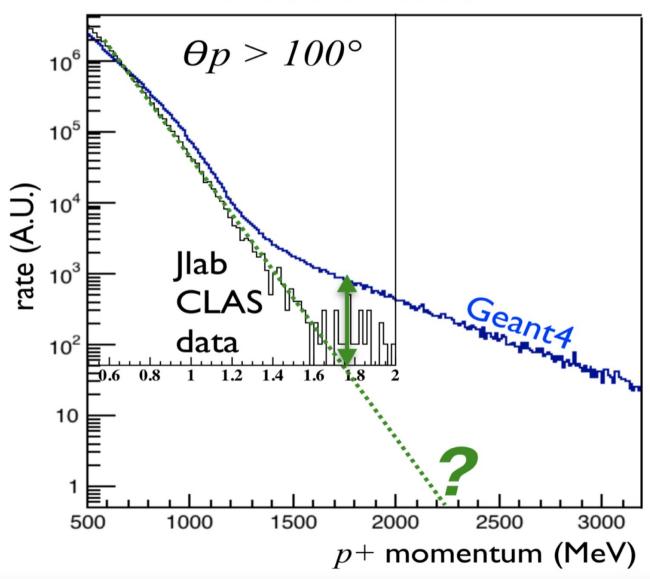

- Gamma-nuclear
 - BERT < 3.5 GeV
 - For all reference physics lists, except for ShieldingLEND, where LENDorBERT model is used below 20 MeV (see next slide)
 - QGSP > 3 GeV
- Electro-nuclear
 - Kossov model of EM cross section and virtual photon generation
 - Weizsacker-Williams conversion of virtual to real gamma
 - For $E_{\gamma} < 10$ GeV, direct interaction with nucleus using BERT
 - For E γ > 10 GeV , conversion of γ to π^o , then interaction with nucleus using FTFP
- Muon-nuclear
 - Kokoulin model of EM cross section and virtual photon generation
 - All else identical to electron-nuclear

LENDorBERT model (1/3)

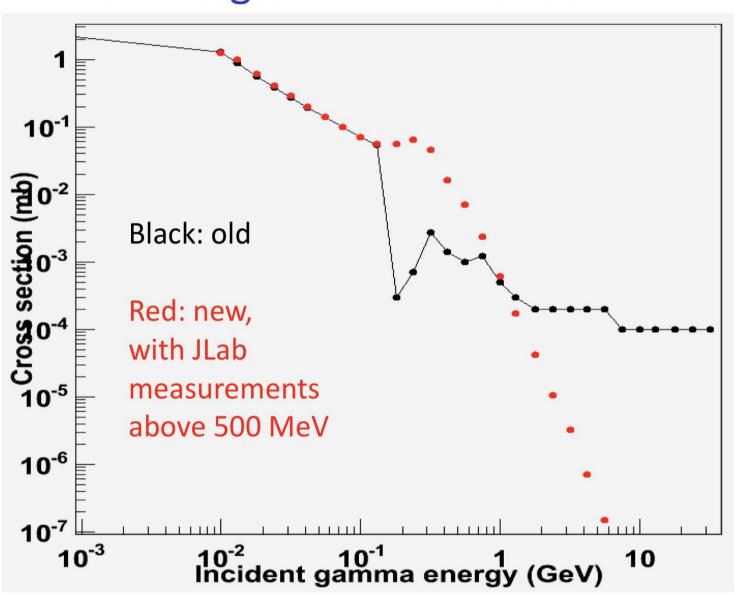
- Recent gamma-nuclear model introduced in G4 10.4
 - Use LEND (GND-based hadronic model) below 20 MeV
 - Use Bertini (BERT) above 20 MeV
 - Bertini is also used when no appropriate data is found in GND
- Started the verification of gamma-nuclear reactions
 - Is the combination model correctly designed?
 - Can the GND data be reproduced with G4 process-level tests?
 - Test by using pure BERT and pure LEND, then comparing
- Validation to follow
 - GND data cover many isotopes from 1 MeV to 150 MeV
 - Also covers several reactions
 - Lots of data for (γ, n)

LENDorBERT model (2/3)

LENDorBERT model (3/3)


- Early conclusions for 12C
 - LEND much better than BERT in Giant Dipole region
 - LEND overestimates data
 - Protons being produced below threshold is part of the reason
 - But Precompound/de-excitation models are apparently not called
- General findings for G4LENDorBERT gamma-nuclear
 - Bug in code causes BERT to always be selected
 - 20 MeV cross-over from LEND to BERT seems to be too low
 - 30 MeV or higher looks better
 - Large number of energy non-conservation warnings
- Plans
 - Understand why pure LEND does not exactly reproduce GND data
 - Look at many other target nuclei to see where to set the LEND-BERT cross-over

Electro-nuclear Validation


- Initial validation against JLab data mentioned last year
- For 5 GeV e- on Pb, Geant4 over-produces protons
 - See next slide
 - High energy quasi-deuteron cross section may be the cause
 - Recently fixed in Bertini
 - Validation plot with new quasi-deuteron cross section not yet produced

Electro-nuclear Problem in Geant4

Improved Quasi-deuteron Photodisintegration Cross Section

