Geant4-10.05-dev

Geant4: improving computing performance by removing redundant G4Log calls

Mihály Novák CERN (EP-SFT)

Mihály Novák Geant4 EM Meeting, 12 July 2019, Geneva, CERN

Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
Contents				

Motivation

2 Solution

3 Results

- Electromagnetic component
- Including hadronic component
- Performance analysis

Further optimisations of the G4PhysicsVector

5 Conclusion

Motivation	Solution 00	Results	Further optimisations of the G4PhysicsVector	Conclusion
Outline				GEANT4

1 Motivation

Everything started with the G4EmElementSelector¹:

00

- for EM models, the G4VEmModel base class provides the possibility to (automatically)build a collection of G4EmElementSelector-s for each material cuts couple
- this collection can be used at run-time, to sample the target atom for the given interaction (in case of multi-element materials)
- each individual (i.e. for a given model given material cuts couple) G4EmElementSelector of the collection stores a table of discrete probabilities of having the given interaction on a given element of the material (i.e. $P(Z_i) = \sum_{Z_i} / \Sigma$) over a discrete energy grid: equally spaced in log energy scale
- the implementation of the table is a vector of G4PhysicsLogVector (as many as elements in the given material)
- at run-time, the target atom is sampled according to this discrete probability distribution: the probabilities are interpolated for the given primary energy
- however, the energy bin index was re-computed for each possible target element during the interpolation: because selectors are individual log-vectors (was fixed in 10.05)

see my presentation at the last collaboration meeting in Lund (Section 3. from slide #37 here)

The issue was however more general:

- the above G4EmElementSelector problem, i.e. extensive use of the G4Log, was clearly shown by the profiling done as part of the new G4SeltzerBergerModel development¹
- however, the origin of the issue was in the underlying G4PhysicsLogVector
- G4PhysicsLogVector is heavily used in Geant4 to store kinetic energy dependent data (dE/dx, R, Σ_t , Σ_{Z_i} , σ , etc.) in a discretised form and to obtain interpolated values at run-time
- at the interpolation, the logarithm of the actual kinetic energy value i.e. G4Log(E_k) needs to be known (for the computation of the abscissa bin index i such that E_i ≤ E_k < E_{i+1})
- the bin index is very often computed, i.e. G4Log(E_k) is evaluated, in spite of the fact that the last index used ilast is (often) cached and checked before the bin index computation
- on the same time, these G4PhysicsLogVectors are accessed at each simulation step to provide values needed to determine the actual physics step length: individual table accesses with the same value of E_k results in redundant G4Log(E_k) computations
- this is the main source of the significant run-time cost of the G4PhysicsVector::Value(G4double E_k, size_t& ilast) method that could have been observed for a long time

 $^{^{1}}$ see my presentation at the last collaboration meeting in Lund (Section 2. from slide #30 here)

Motivation	Solution 00	Results	Further optimisations of the G4PhysicsVector	Conclusion
Outline				GEANT4

G4double E_k, G4double LogE_k, size_t& ilast) method G4double G4PhysicsVector::Value(G4double theEnergy, G4double theLogEnergy, *size_t*& lastIdx) const

 1 see my presentation at the last collaboration meeting in Lund (Section 3. slide #40 here)

Additional information:

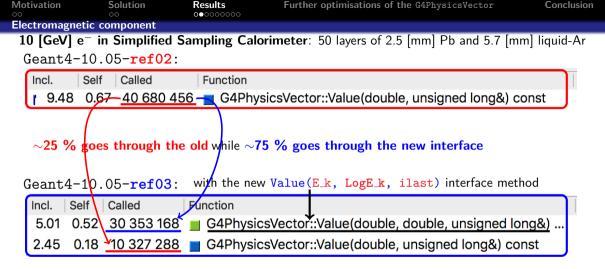
- about 40 files have been modified over 5 categories to introduce and to make use of the new functionality
- the simulation results are not affected by the changes: results stay **numerically identical** before and after merging the corresponding changes
- the profiling results shown in the following slides were obtained by:
 - using valgrind with the --tool=callgrind
 - instrumentation only in the event-loop: CALLGRIND_START_INSTRUMENTATION and CALLGRIND_STOP_INSTRUMENTATION at the end/beginning of the Begin-/EndOf RunAction with the --instr-atstart=no (i.e. pure run-time contributions are measured)
 - Geant4-10.05-ref02 refers to the -ref02 master before while Geant4-10.05-ref03 to the master after merging the corresponding changes
 - both versions of Geant4 were build and used in DEBUG mode during the profiling to see all inlined methods (i.e. look only the call counters and do not give significance neither to the inclusive nor to the exclusive performance contributions)

Motivation	Solution 00	Results	Further optimisations of the G4PhysicsVector	Conclusion
Outline				GEANT4

Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
		• 0 0000000		
Electromagnet	tic component			

3 Results

Electromagnetic component


Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
00	00	00000000		
Electromagn	etic component			
10 [GeV]	e ⁻ in Simplified	d Sampling Calo	rimeter: 50 layers of 2.5 [mm] Pb and 5.7 [mr	n] liquid-Ar
Geant4-	-10.05- <mark>ref02</mark>	2:		
Incl.	Self Called	Function		
r 9.48	0.67 40 680	456 🔳 G4Phys	sicsVector::Value(double, unsigned long&) co	onst

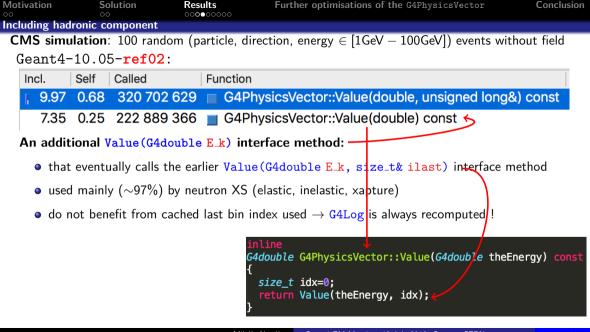
 $^{^1}$ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40 here)

Motivation	Soluti		sults Furthe	er optimisations of the G4PhysicsVector	Conclusion
Electromagn			500000		
10 [GeV]	e ⁻ in Sim	plified Sam	pling Calorimeter:	50 layers of 2.5 [mm] Pb and 5.7	[mm] liquid-Ar
Geant4	-10.05-1	cef02:			
Incl.	Self Ca	lled F	Function		
r 9.48	0.67 40	0 680 456	G4PhysicsVector	or::Value(double, unsigned long&) const

In			Called	Function		
5	i.01	0.52	30 353 168	G4PhysicsVector	::Value(double, double, unsigned long&)	_
2	.45	0.18	10 327 288	G4PhysicsVector	::Value(double, unsigned long&) const	

¹ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40 here)

¹ see my presentation at the last collaboration meeting in Lund (Section 3. slide #40 here)


Motivation	Solution	Results ○●○○○○○○○	Further optimisations of the G4PhysicsVector	Conclusion
Electromagnetic	component			
10 [GeV] e ⁻	in Simplified S	ampling Calori	meter: 50 layers of 2.5 [mm] Pb and 5.7 [mm]	liquid-Ar
Geant4-10	.05- <mark>ref02</mark> :			
Incl. Se	lf Called	Function		
r 9.48 0.	67 40 680 45	6 🔳 G4Physio	csVector::Value(double, unsigned long&) con	st
Incl. Self	Called	Function		
6.57 1.9	5 57 714 78	0 – G4Log(c	louble)	
Geant4-10	.05- ref03 :	~24 % redu	ction in run-time G4Log-calls for EM	shower1
Incl. Self	Called	Function		
5.01 0.52	2 30 353 168	G4Physics	Vector::Value(double, double, unsigned long	&)
2.45 0.18	10 327 288	G4Physics	Vector::Value(double, unsigned long&) cons	t
Incl. Self	Called	Function		
4.96 1.47	<u>/ 44 014 751</u>	1 G4Log(do	puble)	

 1 see my presentation at the last collaboration meeting in Lund (Section 3. slide #40~here)

Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
		00000000		
Including hadr	onic component			

3 Results

Including hadronic component

Motivat	ion	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
	<u> </u>	c component			
CMS	simulati	on : 100 randor	n (particle, dired	ction, energy \in [1GeV $-$ 100GeV]) events without	ıt field
Gea	ant4-10	05- ref02 :			
Inc	sl. Sel	Called	Function		
1	9.97 0.6	8 320 702 6	629 🔲 G4Phy	sicsVector::Value(double, unsigned long&)	onst
	7.35 0.2	222 889 3	366 🔳 G4Phy	sicsVector::Value(double) const	

Geant4-10.05- ref03 :	with the new $Value(E_k,$	<pre>LogE_k, ilast) interface method</pre>	
Incl. Self Called	Function		ĩ.

inci.		Called	Function	
5.42	0.69	304 046 692	G4PhysicsVector::Value(double, double, unsigned long	
0.69	0.04	16 655 937	G4PhysicsVector::Value(double, unsigned long&) const	
0.29	0.00	4 275 138	G4PhysicsVector::Value(double) const	

Motivation	Solution 00	Results ○○○●○○○○○	Further optimisations of the G4PhysicsVector Con	clusion
Including hadro	nic component			
CMS simula	tion: 100 rando	m (particle, di	lirection, energy \in [1GeV $-$ 100GeV]) events without fie	ld
Geant4-1	0.05- ref02 :			
Incl. S	elf Called	Function	n	
9.97 C).68 <u>320 702 (</u>	629 📃 G4P	PhysicsVector::Value(double, unsigned long&) cons	t
7.35 0	.25 222 889 3	366 🔳 G4P	PhysicsVector::Value(double) const 🖯	J
			~ 98 % reduction in Value(G4double E_k)	calls
\sim 5 % goes	through the ol	d while ~95	% goes through the new interface	
Geant4-1	0.05- ref03 :	with the ne	w Value(E_k, LogE_k, ilast) interface method	
Incl. Self	Called	Function		
5.42 0.6	9 304 046 69	2 🖌 G4Phy	/sicsVector::Value(double, double, unsigned long	
0.69 0.0	4 16 655 93	7 🔳 G4Phy	/sicsVector::Value(double, unsigned long&) const	
0.29 0.0	0 4 275 13	8 🔳 G4Phy	vsicsVector::Value(double) const 🖌	J

$\underset{\circ\circ}{\text{Motivation}}$	Solution 00	Results ○○●○○○○○	Further optimisations of the G4PhysicsVector	Conclusion
Including had	Ironic component			
CMS sim	ulation: 100 ran	dom (particle, di	rection, energy \in [1GeV $-$ 100GeV]) events witho	ut field
Geant4	-10.05- <mark>ref0</mark>	2:		
Incl.	Self Called	Function		
9.97	0.68 320 70	2 629 🔳 G4P	hysicsVector::Value(double, unsigned long&)	const
7.35	0.25 222 88	9 366 🔳 G4P	hysicsVector::Value(double) const	
Incl. S	Self Called	Function		
4.93	1.46 322 222	206-1 G4Lc	og(double)	
Geant4	-10.05- <mark>ref0</mark>	3∶ ~ 62∖% r	eduction in run-time G4Log-calls !!!	
Incl. S	elf Called	Function		
5.42 0	0.69 304 046	692 📃 G4 <mark>Phy</mark>	sicsVector::Value(double, double, unsigned lo	ong
0.69 0	0.04 16 655	937 🔳 G <mark>4</mark> Phy	sicsVector::Value(double, unsigned long&) co	nst
0.29 (0.00 4 275	138 🔳 G <mark>4</mark> Phy	sicsVector::Value(double) const	
Incl. S	elf Called	Function		
1.94 (0.58 124 351	365 📄 G4Log	g(double)	

Performance analysis	Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
Performance analysis			00000000		
	Performance a	nalysis			

3 Results

Performance analysis

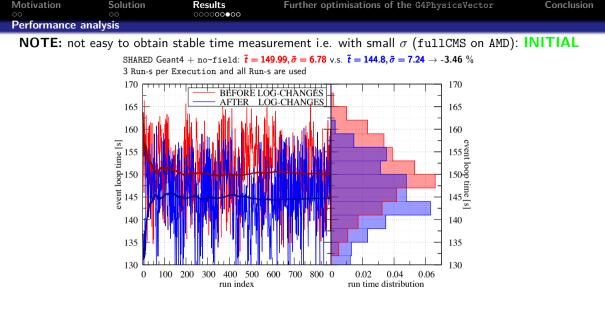
Motivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
		000000000		
Performance a	nalysis			
T 1.1.				

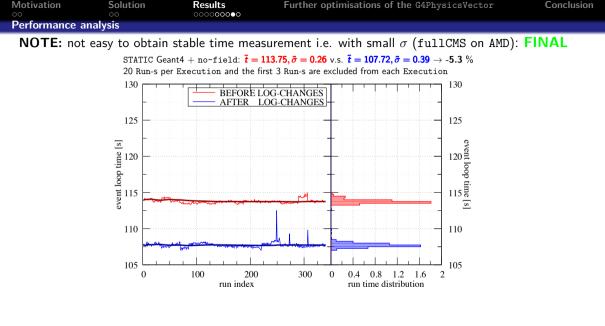
Two architectures:

- <u>AMD</u>: AMD Desktop (SLC 6.10 Carbon), 3.5 GHz AMD PRO A10-9700 R7 processor with 8 GB DDR4-2400 SDRAM memory and gcc 8.2.0 (sourced from /cvmfs/sft.cern.ch/lcg/... i.e. not local)
- MacBook: MacBook Pro (MacOS 10.13.2), 2.8 GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory using Apple LLVM v10.0.0 (clang-1000.10.44.4) (local)

Two applications:

<u>HadCalCMS</u> (EM shower):


- Application : simplified (Cu-lAr) sampling calorimeter simulation
- Field : constant (4 or 10^{-5} [T]) or zero magnetic field
- Events : 50 [GeV] e^- with FTFP_BERT physics list
- Run : 200 Events


<u>fullCMS</u> (combined EM-Hadronic shower):

- Application : simulation application using the complete CMS detector
- Field : no field

Run

- Events : random particle type, direction, energy with FTFP_BERT p. list
 - : 100 Events

viotivation	Solution	Results	Further optimisations of the G4PhysicsVector	Conclusion
00		00000000		
Performance an	nalysis			
T 1		· ·		

The corresponding performance improvements:

fullCMS (combined EM-Hadronic shower):

- ~8% on my MacBook Pro (MacOS 10.13.2), 2.8 GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory using Apple LLVM version 10.0.0 (clang-1000.10.44.4) (all local)
- ~5.3 % on my AMD Desktop (SLC 6.10 Carbon), 3.5 GHz AMD PRO A10-9700 R7 processor with 8 GB DDR4-2400 SDRAM memory using gcc 8.2.0 sourced from /cvmfs/sft.cern.ch/lcg/... (i.e. not all local)

HadCalCMS (pure EM-shower):

- ~2.3-4.2 % on my MacBook Pro (MacOS 10.13.2), 2.8 GHz Intel Core i7 processor with 16 GB 1600 MHz DDR3 memory using Apple LLVM version 10.0.0 (clang-1000.10.44.4) (all local)
- ~2.3 % on my AMD Desktop (SLC 6.10 Carbon), 3.5 GHz AMD PRO A10-9700 R7 processor with 8 GB DDR4-2400 SDRAM memory using gcc 8.2.0 sourced from /cvmfs/sft.cern.ch/lcg/... (i.e. not all local)

Motivation	Solution 00	Results	Further optimisations of the G4PhysicsVector	Conclusion
Outline				GEANT4

Further optimisations of the G4PhysicsVector

Beyond some possible micro-optimisations the following will be considered :

- the G4PhysicsVector and its Value methods (even the new one) are still general:
 - covers all possible binning schemes (using types defined in G4PhysicsVectorType)
 - calling the Value method will call FindBin (after some checks)
 - FindBin will call FindBinLocation (after some checks)
 - that will eventually determine the lower bin index depending on the vector type
- however, when we use the new Value(E_k, LogE_k, ilast) method we know that the type is T_G4PhysicsLogVector (general = this method works even if the type is not LogVector)
- LogVector is the dominant type (see the callgrind results: EM 75 %, EM-Hadronic 95%)
- make use of the LogVector-type information especially because its importance:
 - introduce a G4PhysicsVector::LogVectorValue(E_k, LogE_k) method
 - fully specialised for T_G4PhysicsLogVector type
 - simplifications(skips some checks: on the type, on the ilast) and streamlining
- results in an even more optimised usage of the G4PhysicsVector at run-time

Conclusion

Outline Geant4	Motivation	Solution 00	Results	Further optimisations of the G4PhysicsVector	Conclusion
	Outline				GEANT4

6 Conclusion

A significant number of redundant G4Log calls have been eliminated:

- by introducing functionality to store/retrieve (in G4DynamicParticle) and re-use the already computed G4Log(E_k) value
- \sim 24-62 % of the run time G4Log calls are eliminated by making use of the new functionality in the EM and Hadronic (neutornXS) physics
- \bullet it gives measurable run-time improvement of ${\sim} 2{\text -} 8$ % depending on the application, configuration and architecture
- a new interpolation method, specialised for LogVector-type will be introduced: G4PhysicsVector:LogVectorValue(E_k, LogE_k)
- this will optimise even further the usage of the G4PhysicsVector at run-time and eliminate further fraction of its significant cost