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Introduction

utronCu

Bethe Radi:

Mass stopping power [MeV cm?g]

m Fue 33.2.3. Stopping power at intermediate energies :
: Radiative The mean rate of energy loss by moderately relativistic charged heavy particles is
Minimum - | well-described by the “Bethe equation,”
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m "As the particle energy increases, its electric field flattens and extends, so that the
distant-collision contribution to Eq. (33.5) increases as In 3. However, real media
become polarized, limiting the field extension. .."

m Relevant for gy > 1

m i.e. kinetic energies: electrons > 0.2 MeV, muons 40 MeV, protons 400 MeV

m Tricky to compute for v < 8

m < 30MeV (e), 700 MeV (i), 6 GeV (p)

m At Bv 2> 8, § is well approximated by a simple form (such that “the mean excitation

energy I is replaced by the plasma energy hw,.")
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Sternheimer 1952

m R. M. Sternheimer. The density effect for ionization loss in materials.
Phys. Rev., 88:851-859, 1952.
m Generalized Fermi's 1940 model to any number of oscillators
m Each “oscillator” is an atomic subshell, e.g. one for hydrogen and helium, three for
carbon, etc.
m Some ambiguities about conduction electrons, electrons in molecular orbitals, etc.

PHYSICAL REVIEW VOLUME 88, NUMBER 4 NOVEMBER 15, 1952

The Density Effect for the Ionization Loss in Various Materials*

R. M. STERNHEIMER
Brookhaven Naiional Laboralory, Upton, New York

(Received July 2, 1952)

The density effect for the ionization loss of charged particles has been calculated for a number of metals,
scintillating materials, gases at various pressures, and photographic emulsion, using a dispersion model
involving an appropriate number of dispersion oscillators for each substance. The results are presented in
the form of graphs which can be used to correct the ionization loss for the density effect. The theoretical curves
for silver chloride and anthracene are in reasonable agreement with experiments on the ionization loss of
u-mesons. A general derivation of the equations for the density effect is given.
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Sternheimer 1984

m R. M. Sternheimer, M. J. Berger, and S. M. Seltzer.
Density effect for the ionization loss of charged particles in various substances.
Atom. Data Nucl. Data Tabl., 30:261, 1984.
m Refines treatment
m Lorentz-Lorenz correction
m Don't assume effect goes to zero in metals at low 3+

DENSITY EFFECT FOR THE IONIZATION LOSS OF CHARGED PARTICLES
IN VARIOUS SUBSTANCES

R. M. STERNHEIMER

Department of Physics, Brookhaven National Laboratory
Upton, New York 11973

and

M. J. BERGER and S. M. SELTZER
Center for Radiation Research
National Bureau of Standards

Washington, D. C. 20234

The density-effect correction §(8) for the ionization energy loss of charged particles has been
evaluated as a function of the particle velocity for a total of 278 substances, including 98 cases of

elements of the periodic table (12 gases and 86 materials, including liquid and
graphite of three different densities) and 180 chemical ds and of biological interest
(13 gases and 167 liquid or solid In the i p-to-date values of the mean

excitation potential / and of the atomic absorption edges hv; were employed as input data for the
general equations for §(8) previously derived by Sternheimer.
4/19



Sternheimer method

m Sternheimer 1952 and 1984 give method
for determining “exact” density effect

m | will call it "exact”, but it relies on
several approximations, primarily:

m Substances are made of isolated atoms m Inputs:
with discrete energy levels

m Only distant collisions contribute to = Mean ionization energy, I

dE/dz m ;: “oscillator frequency”’ = effective
m Effective oscillator frequencies are |0r.1|‘z‘at|9n energies (m?dulo h) .
subshell energies scaled up to match m f;: "oscillator strength” = fraction of

electrons with o;

ean ionization ene .
mean tonization energy m Obtain from tables (G4AtomicShells)

m Computationally difficult without
electronic computers

m Have to solve (to good precision) a
n-degree polynomial where n is the
number of oscillators
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Sternheimer approximation

m Because of difficulty of solving for ¢, Sternheimer 1952 provides an approximation:
m Below some value § is zero
m Then it's curved upwards as a function of log(p)
m Then straight as a function of log(p)

k I ] In order to give more accurate values of 8, which do
“F BERYLLIUM not involve the use of Figs. 1 and 2, the calculated
uf values of § have been fitted by means of an analytic
s ANTHRACENE .
expression as follows:

waten 7 §=4.606x+C+a(ei—o)",  (v<z<w)  (10)
ALUMINUM | $5=4.606x+C, (x> 1) (10a)

/1 "SILVER CHLORIDE

/ where x =logio(p/uc) and a, m, C are constants which
TN depend on the substance; xp is the value of x which
corresponds to the momentum below which §=0 [see
Eq. (9a)]; %1 corresponds to the momentum above
which the relation between § and x can be considered
° 55 5 st yetitbigeens to be linear. The linearity of 8 at large energies can be

L0Go{pe) seen from Figs. 1 and 2. The linear relationship is

DENSITY CORRECTION &

IAEaEAREEERE S

[ URANIUM

m Values for m, a and the cut-offs zo and x; are given for several substances
m Any reference to {m, a, xo,z1,C'} means the approximation is in use
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Development of the

PHYSICAL REVIEW B VOLUME 3, NUMBER 11 1 JUNE 1971

m R. M. Sternheimer and R. F. Peierls. General Expression for the Density Effect for the lonization Loss of Charged Particles*
General expression for the density effect R. M. Stermheimer and R, F. Pelerls

Brookhaven National Laboratory, Upton, New York 11973

R R e ey
for the ionization loss of charged e
R e G e e
H . polarization of the medium. The general expression for & thus obtained is applicable to both
particles. Phys. Rev., B3:3681-3692, i e e
loss dE/dx are expected to have a maximum error of less than 2% throughout the range of mo-
1 97 1 ‘menta where the density effect is important.

m Confusingly, “general expression” means “further approximation”

m Method for finding rough values of the {m, a, zo,z1,C} if computation to find good
values for them hasn't been done
m This is doubly approximate relative to the “exact” method

m Besides refining the exact method, Sternheimer 1984 also tabulates parameter values
for the approximation for many substances

m Geant4 uses these if a substance is tabulated, e.g. iron
m Otherwise, “general expression” is used, no matter how similar it is to a tabulated
material, e.g. steel (98% iron)
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Implementation of exact form in Geant4

m Not computationally difficult on a modern computer
m My patch has been submitted as “Problem” 2121

m Patch is 813 lines
m Lots of comments, some boilerplate: Only about 300 lines of new code
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https://bugzilla-geant4.kek.jp/show_bug.cgi?id=2121

Outline of implementation

m Implementation of Sternheimer 1984, § “Numerical Evaluation of the Density Effect”

m Ignoring the following sections, “Fitting Formula”, etc., which are about approximation

Numerical Evaluation of the Density Effect

‘The calculations of 4(8) are based on the following
equations, derived by Sternheimer** in 1945 and 1952:

¥B) = TS (G + Py =P =8 ()
-

where § = /c is the particle velocity divided by the ve-
Tocity of light, and / is the solution of the equation,

Lo os_ L

U IET @
where n is the number of dispersion oscillators required
to describe the atoms of the medium and the f; are the
corresponding oscillator strengths. In Eq. (2), 7, s defined
by

= viplvy, 3

‘where v, is the absorption edge for the ith oscillator of
the dispersion model. The quantity v, is the plasma
energy of the electrons of the substance considered as
firee clectrons, and is given

v, = 28.816(p0Z/A4)" eV, @

where pq is the density of the medium (in g/cm’), Z is
the atomic number, and 4 is the atomic weight. In the

by the ratio of the total number of electrons to the effective
molecular weight or the sum of atomic weights of the
constituent atoms: EZ/Z4,. As in Ref. 12, a scparate
dispersion oscillator is used for each subshel of the atom
considered, e.g, K, Ly, Ly, and Ly for neon. The quantity
pin Eq. (3) i the adjustment factor which was introduced
by Sternheimer® in 1952 and which is designed to give
agreement of the oscillator energies v;p (or rather Arl)
with the observed mean excitation potential 1. Specifically,
in Eq. (1), the constants /, are defined by

L= (7 + @D for 5>0 )
L=fi? for =0
(for conduction electrons in a metal). ©)

In Eq. (5), the factor 2/3 takes into account the Lorentz~
Lorenz correction [see Ref. 5. Eqs. (48)(52)] in the
expression for the polarizability a(»); note that this factor
doces not enter for the case of conduction electrons for
which £, = f}%, as given above.

‘The mean excitation potential / of the medium is
given by

In 1= 3 /;In (hv,l). )

By making use of Eq. (3) for #,, we obtain the following
expression, which is used to determine the value of the
Sternheimer adjustment factor p:

Inl= 3 fin [l + Q13 filhwy)"

S (bR, (8)

m User specifies if material is a conductor:
GetMaterialPropertiesTable ()
->AddConstProperty("conductor", 1)

m Materials are insulators by default

m First, solve Eq. (8) to find scaling factor p
in SetupFermiDeltaCalc()

m Numeric, Newton's method

m Evaluated once during initialization, no
heavy lift per step

m Uses tabulated mean ionization energy, I
m Can have no solution if user gives very
high density for which I-value is invalid

m e.g. hydrogen at 10g/cc
m Print detailed warning, fall back to
approximation
m Approximation won't be good either!
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Outline of implementation, continued

m Using p, solve Eq. (2) to find [, again with Newton's

Numerical Evaluation of the Density Effect

The calculations of 4(8) are based on the following method

equations, derived by Sternheimer’* in 1945 and 1952: L.
. Lo m Evaluated once per energy bin in Range table, no heavy
- 12+ PyB) - (1 - ), -

B) '.Elfrln[(1+ Wi = Fa=-6) (1) lift per step
where 8 = v/c is the particle velocity divided by the ve- m Possible, in principle, for this to fail, but | haven't seen it
locity of light, and / is the solution of the equation, . . . . P

. . m Print warning and fall back to approximation if it does
F—]:EW. @

where n s the number of dispersion. oscillators required

m With [ in hand, evaluate Eq. (1) to find §
to describe the atoms of the medium and the f; are the

comtsponding oscillator strengths, In B ), 7 saeina @ Check value of § against that gotten from the

by . . .
7= violv, &) parameterlzed approximation

here hv; is the absorptic for the ith oscillate f . . .

:;ee:sspiﬁone.:ude[p&fﬁngfy oy i the plasma m If they differ by more than 1.0, print warning and use

energy of the electrons of the substance considered as

free electrons, and is given by® approximation

oy = 28.816(00Z/4) eV, @ m However, if approximation is negative (unphysical), always
where po is the density of the medium (in g/em’), Z is use exact form. Can happen for substances with extremely
the atomic number, and A is the atomic weight. In the . 1 " . —25
case ofa compound or molecular gas, Z/A is to be replaced low density, e.g. NOVA's “vacuum” with 10 g/cc.

m | have not found a case where this fall back is used
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Example: Aluminum

12F :
C Aluminum ]
10f — Sternheimer 1984 " Exact” 4 = Shows difference between
[ --- 1984 Approximation ]
gb « 1984 approx. stitch point E results for exact form and
N Sternheimer 1971 approx. h tabulated approximation
o s ]
6:‘ 7 = And between exact form and
A h “general expression” (e.g.
- ] 99.99% aluminum)
2F ]
1In terms of dE/dx:
L 1 1
T T ..[ T T T T L . . QQLé
L. 02 1] = 0 contributes via K2° 5 25 5
I% 01' 1 = Typically, 1 unit of § translates
i% 1 T | to ~0.07 MeV/gcm?, or ~5%
3 L Cal s 7| = Pure Al, exact form is 0.3%
‘;' i 4 improvement (at max
5 [ 1 deviation)
< -0.2+ i
by \ . . . 4 = Impure Al, exact form is 1.1%

0 0.5 1 15 2 25 3 35 improvement
X= Iogm(momentum/mass)
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Example: paraffin wax

12F ' ' -
N Paraffin wax 1
10F — Sternheimer 1984 "Exact” A
[ --- 1984 Approximation ]
g o 1984 approx. stitch point g
Eooeees Sternheimer 1971 approx. ]
o 6 -
4 E
of 1 = Exact form is 0.3%
r ] improvement for exactly
1 1 1 ] .
' ' ' ' ' ' ' i paraffin wax
= 0.2F . ; -
3 L | = 1.0% improvement for similar
=|-|>j 0.1~ B hydrocarbons
% 0.0~ o N
S -0+ -
d -02- e .

0 0.5 1 15 2 25 3 35
X= Iogm(momentum/mass)
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Example: iron

12F
N Iron ]
10F — Sternheimer 1984 "Exact” .
[ --- 1984 Approximation ]
g o 1984 approx. stitch point g
Fooeee Sternheimer 1971 approx. ]
o 6 -
4 —I
2:_ 1 = Pureiron: 1984 approximation
r : ] is quite close to the exact
Il Il Il Il Il 1 .
' T T T T T T ™ solution
= 021 .
3 I m Impure iron (say, steel): 1971
=|-|>j 0.1 R approximation, up to 1.3% off
B oof T e
= =0.1f, e —
<-02- % -

0 05 1 _ 15 2 25 3 35
X= Iogm(momentum/mass)
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Example: liquid argon

12

10,

Liquid argon

—— Sternheimer 1984 "Exact"
Sternheimer 1971 approx.

0.2
0.1
0.0
-0.14

Adw.r.t. 1984 "Exact"

-0.2

1 15 2 25
X= Iogm(momentum/mass)

Liquid argon is not tabulated
by Sternheimer 1984

Up to ~ 0.6% deviation in
dE/dz from 1971
double-approximation

Notice how the density effect
doesn't set in until x = 0.5
(250 MeV for muons)

That’s because argon doesn’t
have any weakly bound
electrons
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Dielectric response

m Using this Sternheimer “exact” form is certainly an improvement
m But is it close enough to physical truth for the difference to matter?

m ICRU 37: the “most accurate method of evaluating the density-effect correction is to
use semi-empirical dielectric-response functions”, but “Reliable and complete [ones ...]
are scarce”

m With dielectric-response functions, don’t have to assume isolated atoms, no sharp
insulator/conductor divide, etc.

m As far as | know, data is only available for water, aluminum and silicon
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Ashley 1982

RADIATION RESEARCH 89, 32-37 (1982)

Density Effect in Liquid Water'?
J. C. ASHLEY
Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

ASHLEY, J. C. Density Effect in Liquid Water. Radiat. Res. 89, 32-37 (1982).

The density effect 4 in the stopping power of liquid water is evaluated. A model calculation
for the imaginary part of the dielectric function is employed which is based in part on the
limited optical data for water and on generalized oscillator strengths for ionization of the K
shell of oxygen. Excellent agreement is found with Sternheimer’s predictions for 4 at higher
energies where & contributes significantly to the stopping power; large differences are found
just above the threshold for the density effect but are at energies where & forms a relatively
insignificant part of the stopping power. The largest deviation in the predicted stopping powers
of water for electrons using the different results for 6 is ~1% at ~5-6 MeV.

m Using “limited data” on €(iy) available for water, evaluated more exact form:
2 [ . 2 2
0=~ | [L=1/e(iy)ydy — (I/wp)"(1 = 5")

p JO
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Example: Water

m +£0.2% from digitizing an
old plot

T T T
12F Liquid water E
10E — Ashley 1982 using dielectric B
r — Sternheimer 1984 "Exact" E
P I Sternheimer 1984 approx. E
P Sternheimer 1971 approx. E
o 6 -
1 = Compared to dielectric
a- - treatment, Sternheimer “exact”
2:_ E is off by up to ~ 0.5%

m Sternheimer tabulated
approximation also ~ 0.5%

m 1971 “general expression” (used
for impure water) ~ 1.0%

0 0.5 1 15 2 25 3 35
X= Iogm(momentum/mass)
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Comparison to dielectric treatment for aluminum, silicon

m Similar effort for aluminum, with better data and better plots:

PHYSICAL REVIEW B VOLUME 25, NUMBER 1 1JANUARY 1982

Fermi density effect on the stopping power of metallic aluminum

Mitio Inokuti and David Y. Smith
Argonne National Laboratory, Argonne, Ilinois 60439
(Received 2 July 1981)

‘The density-effect correction 3 to the Bethe stopping-power formula for fast charged particles
is evaluated for metallic aluminum from the dielectric-response function e(E). The latter has
been accurately determined over the entire range of excitation energy E by Shiles, Sasaki,
Inokuti, and Smith through comprehensive analysis of all pertinent experimental data. The
resulting values of & (which is a function of the particle speed Ac) should be the most reliable
to date. The present result agrees well with that of Sternheimer, who used a simpler and less
rigorous procedure, and thus corroborates the general view that & is insensitive to fine details of
the behavior of e(E). We also present general remarks on the evaluation of  and on the ana-
Iytic continuation of €(E) as a function of the complex encrgy E.

- "
“ i
HN
E b\ E
100 % w8
. B\
© Elh
© El"
S
- -20
X X

m Max deviation in & between Sternheimer “exact”, dielectric: 0.03 (0.15% in dE/dz)
m Max deviation between Sternheimer “exact” and tabulated approximation is 0.061
m And from tabulated approximation to “general expression”, 0.2
m Silicon: Bichsel, Rev.Mod.Phys. 60, 663 (1998): max deviation 0.06 (0.3% in dE/dx)

m Between Sternheimer “exact”, tabulated approximation: 0.059
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Conclusions

m This patch implements the calculation from which the parameterized approximation
Geant4 has been using derives

m Confident that moving from Sternheimer “general expression” to exact form is an
improvement

m This is what the patch does for most materials

m Moving from approximation with 1984 tabulated parameters to exact form is certainly
an improvement, but may or may not be significant

m Only relevant to pure elements, a few selected compounds and mixtures

m Avoids sudden change in behavior when user switches a tabulated material for a
nearly-identical untabulated one

m No significant change to CPU usage
m Patch already used by NOVA to obtain improved dE/dz in steel by up to 1.3%

m Important because this difference cannot be calibrated out in a neutrino experiment
m Same will be true for DUNE at the level of 0.6%
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Backups
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More detail on Ashley 1982

Had to digitize plots for this, and the two plots in Ashley disagreed by up to 0.05

12 T T TTI0g T T 1T T T T TTTT T T TTTT 10 T T TTTImg T T LTI T T TTTIT

St-P
10 - LIQUID WATER

o
®
I
|

o
()]
I
I

o

s

T
|

PERCENT DECREASE IN S

o
~
T
|

0 ISRt Ll L1l
10! 1P 10! 102
T ELECTRON KINETIC ENERGY (MeV)
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Other Approximations

The #; must be obtained for each case from the energy
levels of the atoms considered. As a first approximation,
the frequencies are given by the ionization potentials
hw; of the K, L, M, --- shells and the f; are equal to
the corresponding occupation numbers divided by the
atomic number Z. The jonization potentials were ob-
tained from the table given by Sommerfeld.® For the
outermost shell, the tables of Bacher and Goudsmit?
were also used, With the y; thus obtained, the geo-
metrical mean v, of the frequencies is calculated; we
have
Iy, =3_f Invs. (4)
& A, Sommerfeld, Afomic Structure and Spectral Lines (Methuen
and Company, London, 1934), third edition, p. 237.

?R. T, Bacherand 5. Goudsmll Atomic Fncrgg States (McGraw-
Hill Book Company, Inc., New Yark 1932).

m Later amended to subshells, but that's

still an approximation: atoms are not
isolated

INHEIMER

=principal quantum number). The f; are 2/47, 8/47,
18/47, 18/47, 1/47. The resulting hw.. is 25.2 ry, which
is a factor 1.25 lower than the experimental value' of
31.5 ry. To obtain the frequencies to be used in Eq. (1)
the »; obtained from the ionization potentials were
raised by the factor 1.25. This procedure was carried
out for each substance. In the following, the experi-
mental mean frequency is denoted by »,’ and the cor-
rected transition frequencies are denoted by v/, so that

vi' = (v ¥m) Vi M

The factor w.'/v. is perhaps an indication that the
average of the states to which the electrons are excited
lies in the continuum above the ionization limit. The
values of # used in Eq. (1) are obtained from

wi=v/vp. (8)

m Assumption that it makes sense to scale

them all up uniformly

m Totally ad hoc as far as | know
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Other Approximations

III. EQUATIONS FOR THE DENSITY EFFECT

Tn this section we give the derivation of the equations

of the density cffect which has been previously ob-

tained.* If the electric fild E of the passing particle

and the polarization P of the medium are Fourier
analyzed, a relation

ale)B,=4aP, (18)

is assumed to hold for the Fouricr components of fre-

quency w. a(w) is 4 times the polarizability, for which

we write
M_ I, m No treatment of the case when the
S ionization is at a small impact
where the atomic fi w:, the d; ta
211 and are o be ?ﬁéﬁllfd e T oo parameter

by Fermi' that the fonization loss to atoms with impact . . . .
parameter greater than b is given by m Minority of interactions

m ~No screening when particle passes

28% “r 1
W= k1 [ (=g )ik KD KR o, (20) L
w f»(Hu ) through atom being ionized?

where Ko and K; are the modified Bessel functions of H H
the sccond kind, Rl denotes the real part, and £ is the = Not sure What _the size of this
square root with real part =0 of approxi mation iI1s
w? w'a
RSP @) m Don't know what the effect of the

Upon using the approximate expressions for K, and Ks, Bessel function a pproxi mation is

Ko(kb)=} In(4/3.17k%%), (21)

Ku(#*B)=~1/47, (21a)

one obtains from Eq. (20}
4mz*

be mJ (—5% . )[ T

Tra/l 3atmbne(i—

= _)]im, (22)

o
—2lny—In( 1——
1
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Back to Paraffin Wax. .. “Exact”

m For non-conductors, “exact” form and
2 approximations crash land at § =0

m | think this is mostly because the theory
treats all electrons as being bound in

free atoms
— m Paraffin: four classes with energies
”z {11.26, 16.59, 288} eV (C) and
e z - 13.6eV (H)

m Really there are a large number of more
weakly bound molecular states, and

™ some electrons in the conduction band

(at finite temperature(?))

m Applies to anything except an
arbitrarily rarefied gas, for which 6 =0
anyway
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m If | move 0.5 of an electron to a

zero-energy conducting band, ¢ stays
positive down to p/m ~ 10® (but then
still breaks down there)

25 /19



[

Effect on muon range in NOvA Muon Catcher

Total range/energy (cm/MeV)

Difference (%)

(-

0.08

0.07]

0.06

0.05

=P
o _w

0.5

[
= o o
o 1o

|
=
[,

Iron
— Groom 2001, modified to exact &
- - Sternheimer 1971

o Geant (mean p¥), pureiron

o Geant (mean p*), +0.01% carbon

T

- + A—+—+—+——+ + F———+——++

[e]
] § ] e . . .
Exact &/Sternheimer 1971
(Geant pure iron) (Geant +0.01% carbon)
/Sternh. 1971: /Groom
o U oM
+ +
Ml oK

Ll Ll

P T |

10

10? 1
Muon kinetic energy (GeV)

m Get 1971 approximation for
impure iron (steel-like)

m Get 1984 approximation for
pure iron

m Geant4 is ~ 0.3% high of
Groom (another evaluation of
1984 approximation) for
unknown reasons

m 1.0% off the best estimate
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Effect on muon range in DUNE

< L ]
® 0.70 -
= L |
E 0.65— —
? 060 |
= L Liquid argon
T 055 — Groom 2001, modified to exact &
g i - - Sternheimer 1971
© o Geant (mean p*, without decay)
= 050
£ L
F 0.45- ‘ ‘
1-0: T T T T i
0.8- E
g o6 — . 3
g 040 o e : E
& 02F o ° =
S ooF E
A8 -02F Exact &/Sternheimer 1971 3
_nab Geant4/Sternheimer 1971 3
0.4F et N " 3
F o W, without decay o Pt k|
-0.6E._. . L L 3
10" 1 10

Muon kinetic energy (GeV)

m Up to 0.5% error if we were to
use exact treatment
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Total range uncertainty in DUNE

m dE/dx is uncertain through the mean excitation energy I and the density effect

m Mean excitation energy error adopted by ICRU is 188 £+ 10eV

m But only been measured in gas. Looking at few examples of substances measured in
both liquid & gas, estimate 5% additional error for phase change

—T
— Error
---Error
---- Error

=
1]
L

Iy
lolll

o
U‘l

from| (ICRU gas)
from | (phase)

from & B
ror

o
nvonnn

1
o
o

Difference from nominal Bethe range (%)
iR
o
P

|
=
o
T

10t o1
Muon kinetic energy (|

10
GeV)

m Error on range is 0.6% across energies relevant to DUNE v,
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Is that big?

m In last NOVA analysis, took 0.9% error on muon range fully correlated ND/FD, and
0.27% uncorrelated

m Fully correl'd = +0.010 x 1072 eV? in Am32,, £0.0031 in sin®f3
m Uncorrelated = +0.0015 x 1072 eV? in Am2,, +0.0016 in sin%6a3

m We're looking at 0.6% uncorrelated error from LAr alone (more later) plus a smaller
(0.2%77) correlated error

m = Very rough estimation (equating NOvA and DUNE) 40.004 x 1073 eV? in Am3,,
40.004 in sin®623

m DUNE sensitivity claims (CDR, Nu2018 talk):

m AmZ,: £0.004 x 1073 eV?
m sinfa3: can be as good as +£0.002 (depending on values of various oscillation
parameters)

m Potential to be a leading error impacting Am3, and max-mixing discrimination

m Obviously needs a study using DUNE sensitivities
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