An Overview of MultiAgent Systems & Reinforcement Learning

Alberto Guffanti
Dipartimento di Informatica - Università degli Studi di Torino

NNPDF Collaboration & N3PDF Meeting
Varenna, 27-30.07.2019
Five trends in History of Computing

- **Ubiquity**
 - Cost reduction allows us to introduce computing capabilities before was uneconomic.

- **Interconnection**
 - Computer systems are no more stand-alone but networked into large distributed systems.

- **Delegation**
 - Computers are performing more and more tasks on our behalf, even critical ones.

- **Intelligence**
 - Growth in complexity of problems that we are able to automate/delegate to computers.

- **Human-orientation**
 - Programming computer systems has evolved towards higher-level (more human-oriented) abstractions.
An (intelligent) **agent** is a computer system that is

- capable of **independent** (autonomous) **action**,
- *on behalf of its user or owner,*
- in a given environment.

This involves figuring out what needs to be done in order to satisfy its own design objectives, rather than being constantly told.
MultiAgent Systems - Definition

“**A multiagent system** is a system that consists of a number of intelligent agents that interact with one-another.”

- In the most general case, agents will be acting on behalf of users with different goals and motivations.
- To successfully interact they will require the ability to **cooperate, coordinate** and **negotiate** with each other, similar to what people do.
MultiAgent Systems - Micro and Macro Problems

Agent Design (Micro)
How do we build agents that are capable of independent, autonomous action in order to successfully carry out the tasks that we delegate to them?

Society Design (Macro)
How do we build agents that are capable of interacting (cooperate, coordinate and negotiate) with other agents in order to successfully carry out the tasks that we delegate to them? In particular, when other agents cannot be assumed to share the same interests/goals.
MultiAgent Systems - Society Design

Vast topic, that I will willfully ignore in the rest of the presentation it deals with problems of

- **Communication** between agents created by different owners
 - Definition of ontologies
 - Formal communication languages

- **Coordination** between agents that might have different goals
 - Distributed consensus algorithms
 - Cooperative vs. Non-cooperative Game Theory
 - Managing of Scarce Resources (Negotiation, Distributed Voting)
“An agent is a computer system capable autonomous action in some environment, in order to achieve its delegated goals.”
Trivial Agents (uninteresting)

- **Thermostat**
 - Delegated goal: maintain a temperature in a room
 - Actions: heating ON/OFF

- **Unix biff daemon**
 - Delegated goal: monitor incoming email and flag it
 - Actions: GUI notifications

Trivial because the **decision making** they do is trivial
Intelligent Agents exhibit three types of behaviour:

- **Reactive**
 - Maintain a constant interaction with the environment and reacts, in a timely fashion, to changes in the latter

- **Proactive**
 - Generate and attempt to achieve goals, not be driven solely by events, but by recognising opportunities and taking initiative

- **Social**
 - Have the ability to interact with other agents via cooperation, coordination and negotiation
Intelligent Agents - Social Ability

- **Cooperation**
 - Working together to achieve a shared goal
 - Prompted by the fact that no agent can perform the whole task alone or that by cooperation a better result can be achieved

- **Coordination**
 - Managing the interdependencies between activities
 - For example, if there is a sharable resource that multiple agents want to use

- **Negotiation**
 - Ability to reach agreement on matters of common interest
 - Typically involves offers and counter-offers with compromises between participants
Intelligent Agents - Other properties (optional)

- **Mobility**
 - Ability of an agent to move around in a physical/digital environment

- **Veracity**
 - An agent will not wilfully communicate false information

- **Benevolence**
 - Agents do not have conflicting goals, and any agent will try to do what is asked for

- **Rationality**
 - An agent will always act in order to fulfill its goals

- **Capability of Learning/Adapting**
 - An agent improves/changes its performance over time
Properties of the Environment

● Accessible vs. Inaccessible
 ○ An environment is accessible if the agent can obtain complete, accurate and up-to-date information about the environment state

● Deterministic vs. Non-deterministic
 ○ An environment is deterministic if any action has a single guaranteed effect, i.e. there is no uncertainty about the state that will result from performing an action

● Episodic vs. Non-episodic

● Static vs. Dynamic
 ○ An environment is static if it can be assumed to remain unchanged except by the performance of action by the agent

● Discrete vs. Continuous
 ○ An environment is discrete if there is a finite number of actions and percepts in it
Intelligent Agents - Goal

We ultimately would like to design an agent that performs complex tasks and takes autonomous action to fulfill its design goals, in an environment that is: partly inaccessible, non-deterministic, non-episodic, dynamic and continuous (i.e. our World).
Machine Learning Paradigms

- **Supervised Learning**
 - **Dataset**: collection of labelled examples \(\{(x_i, y_i)\}_{i=1..N} \)
 - **Goal**: use the *dataset* to create a *model* that takes a feature vector as input and returns information that allows to deduce the corresponding label

- **Unsupervised Learning**
 - **Dataset**: collection of unlabelled examples \(\{x_i\}_{i=1..N} \)
 - **Goal**: create a model that takes a feature vector as input and returns another vector or a number that is the solution to a practical problem
 - **Clustering algorithm**: returns the id of the cluster the example belongs to
 - **Dimensional reduction**: returns a vector with fewer features
 - **Outlier detection**: returns a number that indicates how much \(x \) differs from a typical example
Machine Learning Paradigms

- Reinforcement Learning
 - The machine lives in an environment and perceives the state of the environment as a vector of features
 - The machine can execute actions in every state, with different actions bringing different rewards
 - Goal: learn a policy, i.e. a function that maps a features vector of a state to an optimal action to be taken in that stage
 - An action is optimal if it maximizes the expected average reward
 - Reinforcement learning solves a particular problem where decision making is sequential and the goal is long-term (i.e. game playing, robotics, resource management, ...)

Key Elements of a Reinforcement Learning system

- **Policy**
 - Defines the agent’s way of behaving at a given time
 - Mapping between perceived states and actions to be taken (might be stochastic)

- **Reward Signal**
 - Sent from the environment to the agent after an action has been performed
 - The agent’s objective is to maximize the total reward over the long run

- **Value Function**
 - Value of a state: total amount of reward an agent can expect to accumulate starting from it
 - Values indicate the long term desirability of a state given the states that will likely follow

- **Model of the environment** (optional)
Key Elements of a Reinforcement Learning system

- Agent
 - State $s \in S$
 - Take action $a \in A$
 - Get reward r
 - New state $s' \in S$

- Environment
Exploration vs. Exploitation Dilemma

- When an agent faces an unknown environment this is key to finding a good solution.
- Without enough exploration we cannot learn the environment well enough.
- Without enough exploitation we cannot maximize our reward in the long run.
- A common solution is to adopt an \textit{\textbf{\textepsilon}}-greedy algorithm, which takes the best action most of the time but does random exploration occasionally.
Reinforcement Learning system as MDP

- Reinforcement Learning problems can be framed in terms of Markov Decision Processes (MDP)
 - ... the future only depends on the current state and not the history
 \[P[S_{t+1} | S_t] = P[S_{t+1} | S_1, \ldots, S_t] \]

- A Markov Decision Process has 5 elements
 - A set of States (S)
 - A set of Actions (A)
 - A transition probability function (P)
 - A reward function (R)
 - A discounting factor for future rewards (\(\gamma \))
Markov Decision Problem - A Typical Work Day
Reinforcement Learning - Common Approaches

- **Dynamic Programming**
 - When the model is fully known, following Bellman equations, we can use Dynamic Programming (DP) to iteratively evaluate value functions and improve policy.

- **Monte Carlo Methods**
 - Learns from episodes of raw experience without modeling the environmental dynamics and computes the observed mean return as an approximation of the expected return.
 - To compute the empirical return MC methods need to learn from complete episodes to compute, and all the episodes must eventually terminate.

- **Temporal Difference Learning**
 - Temporal-Difference (TD) Learning is model-free and learns from episodes of experience.
 - TD learning methods update targets with regard to existing estimates rather than exclusively relying on actual rewards and complete returns as in MC methods (**bootstrapping**).
Reinforcement Learning - Q-Learning

- If we knew the **expected reward of each action at every step**, this would be a **cheat sheet** for the agent, which would know exactly which action to perform.
- The agent will perform a sequence of actions that will eventually generate the maximum total reward (**Q-value**), and we formalise our strategy as

1. At time step t, we start from state S_t and pick action according to Q values,
 \[A_t = \arg \max_{a \in A} Q(S_t, a); \ \text{ϵ-greedy is commonly applied.} \]
2. With action A_t, we observe reward R_{t+1} and get into the next state S_{t+1}.
3. Update the action-value function:
 \[Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a \in A} Q(S_{t+1}, a) - Q(S_t, A_t)) \]
4. $t = t+1$ and repeat from step 1.
Reinforcement Learning: from Q-Learning to DQN

- **Q-learning** is a simple yet powerful algorithm to create a cheat sheet to help an agent to figure out which action to perform in a given state.

- Things quickly get out of control with the number of states and actions (an environment with 10k states and 1k actions per state, would create a table of 10 million cells).

- In **Deep Q-Network (DQN)** one replaces the **Q-values table** with a **Deep Neural Network**, with all its advantages and disadvantages.
Reinforcement Learning - Examples

Example: TD-Gammon

Tesauro, 1992-1995

Start with a random Network
Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions
Deep Reinforcement Learning - Examples

RL + Deep Learning, applied to Classic Atari Games

- Learned to play 49 games for the Atari 2600 game console, without labels or human input, from self-play and the score alone

- Learned to play better than all previous algorithms and at human level for more than half the games
Deep Reinforcement Learning - Examples

AlphaGo: using machine learning to master the ancient game of Go

In late 2016 we introduced AlphaGo, a single system that taught itself from scratch how to master the games of chess, shogi (Japanese chess), and Go, beating a world-champion program in each case. We were excited by the preliminary results and thrilled to see the response from members of the chess community, who saw in AlphaGo's games a ground-breaking, highly dynamic and "unconventional" style of play that differed from any chess playing engine that came before it.

AlphaStar: Mastering the Real-Time Strategy Game StarCraft II
Critical appraisal of Deep Reinforcement Learning

- Deep Reinforcement Learning is the basis of the most striking results presented before but ...

- ... it turns out to be a very specific technique and DRL trained agents do not generalize well, with small changes leading to drastic drops in performance
 - ... moving the paddle up by a few pixels in Breakout
 - ... changing map and “race” of the characters in Starcraft

- DQN seems to be a sort of “super-memorization”: systems that use it are capable of amazing feats but have a shallow understanding of the context

- DQN requires huge amount of data (i.e. millions of self-played games of Go), much more than a human would require for a similar task
Conclusions

- MultiAgent Systems are a natural development of trends that have ever been present in the history of computing (ubiquity, delegation, networking...)
- They are an interesting and multi-disciplinary field (distributed systems, design of intelligent agents, simulations of social interaction, game theory)
- Reinforcement Learning is one of the main techniques used in developing intelligent agents that act in complex environments
- Combining Reinforcement Learning (Q-learning) with Deep Neural Networks led to impressive results