Geoneutrino Measurement at JUNO

Bedřich Roskovec (on behalf of the JUNO collaboration) University of California, Irvine

> NGS2019, Prague October 22, 2019

JUNO - Multipurpose Experiment

Reactor neutrino oscillations:

- Mass hierarchy determination
- Precise measurement of three oscillation parameters

Parameter	Current precision (1σ)	Improvement by JUNO		
sin ² 2θ ₁₂	5%	<0.7%		
Δm_{21}^2	2.3%	<0.6%		
Δm ₃₁ ²	2.5% sign unknown	<0.5% sign determination		

Other physics:

- Supernova (SN) neutrinos
 - 10⁴ events from SN @ 10 kpc
 - Testing SN models
 - Possibility of independent determination of MH

Diffuse SN neutrinos

- 1-4 events per year
- Possible discovery

Geoneutrinos

- Scope of this talk
- Solar neutrinos
 - ⁷Be, ⁸B neutrinos detected via elastic scattering
- Proton decay
 - p->K++v
 - ...and more

Reactor Neutrino Sources

Two other Taishan cores come later

26.6 GW_{th} by 2020: Better for geoneutrinos ✓

Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9
Baseline(km)	52.75	52.84	52.42	52.51	52.12	52.21
Cores	TS-C1	TS-C2	TS-C3	TS-C4	Γ	
Power (GW)	4.6	4.6	4.6	4.6	T	
Baseline(km)	52.76	52.63	52.32	52.20		

Each core emits $\mathcal{O}(10^{20}) \, \bar{\nu}_e/\mathrm{s}$

Experimental Cavern

- Overburden ~700 m
- Ultra pure water pool: h=44 m, Ø=43.5 m

JUNO Detector

Top tracker

- Three layers of plastic scintillator
- Reused from OPERA experiment
- Covers $\sim^2/_3$ of the water pool area
- Provides independent and precise cosmic-ray muon tracking

JUNO Detector

Water Pool

- 40 kt of ultra pure water
- Passive shielding
- Instrumented with 2k 20-inch PMTs
- Active Cherenkov detector for cosmic-ray muon tagging (>95% efficiency)
- System of coils to suppress Earth's magnetic field

JUNO Detector

Large 20-inch PMT

Small 3-inch PMT

Central Detector

- 20 kt of liquid scintillator
- Largest of its kind in the world
- Unique system of
 18k 20-inch LPMTs and
 25k 3-inch SPMTs
 for double calorimetry
- LPMT ~75% photocoverage → superb energy resolution
- LPMT photon detection efficiency ~30%

B. Roskovec - UCI

Geoneutrinos@JUNO

Geoneutrino Detection

B. Roskovec - UCI

2019-2020

g

Mostly electron antineutrinos

$$\begin{array}{c} 238\\92\\92\\92\\0\end{array} \rightarrow {}^{206}_{82}\text{Pb} + 8\alpha + 6e^- + 6\bar{\nu}_e + 51.698 \text{ MeV} \\ 235\\92\\0\end{array} \rightarrow {}^{207}_{82}\text{Pb} + 7\alpha + 4e^- + 4\bar{\nu}_e + 46.402 \text{ MeV} \\ 232\\90\\Th \rightarrow {}^{208}_{82}\text{Pb} + 6\alpha + 4e^- + 4\bar{\nu}_e + 42.652 \text{ MeV} \\ 40\\19\\K \xrightarrow{40}_{19}\text{K} \xrightarrow{89.3\%}_{20} \begin{array}{c} 40\\20\\Ca + e^- + \bar{\nu}_e + 1.311 \text{ MeV} \\ 40\\19\\K \xrightarrow{10.7\%}_{18} \begin{array}{c} 40\\18\\Ar + \nu_e + 1.505 \text{ MeV} \end{array}$$

Detection method: Inverse β decay (IBD)

Geoneutrinos detected by particle physicists

Inverse beta decay threshold 1.8 MeV

Geoneutrinos@JUNO

Energy per decay

- Fraction carried away by geoneutrinos
- The rest converts to radiogenic heat

Geophysicists interested in total heat production in the Earth

Key Aspects of Geoneutrino Measurement

- What is needed to perform a good geoneutrino measurement?
 - Low cosmic ray muon flux → Be underground JUNO±
 - Low reactor neutrino background → Be far from reactors JUNOX
 - Or know your reactor background well → Measure it **JUNO**/?!?
 - Low radioactivity \rightarrow Purification of the scintillator **JUNO**
 - High statistics → Large detector JUNO/
 - Sufficient energy resolution for Th/U ratio (for fixed Th/U ratio not needed) → Design your detector accordingly JUNOV

15

JUNO will get the largest geoneutrino sample in <1 year

- We have so far ~164 events from KamLAND and ~53 events from BOREXINO
- Challenge for JUNO is however huge reactor neutrino background
 - At what precision can JUNO extract the geoneutrino signal?

Impressive JUNO Geoneutrino Measurement

A THE PARTY OF CONTRACT OF CON

Geoneutrinos@JUNO

JUNO's potential with geoneutrinos is impressive

B. Roskovec - UCI

- The precision depends on the reactor neutrino spectral shape uncertainty
- Assumed shape uncertainty 1% for ~80 keV bin width is quite aggressive

B. Roskovec - UCI

Geoneutrinos@JUNO

(asinitely explained by Dr. Zhang) Precision not at 1% (80 keV bin width)

and Daya Bay measurement with power energy resolution:

Experiments observe discrepancy in shape

e.g. as so-called Huber+Mueller model

reactor neutrino spectrum shape can

Current best knowledge from Daya Bay

bias the geoneutrino-measurement!

Using theoretical predictions for a

from state of the art prediction,

- Đæy a Bay σ_E ≈8.5% √E(Me)
 - Antineutrino Energy (MeV) JUNO σ_E≲3%√E(MeV)

Daya Bay Reactor Neutrino Spectrum Ratio Data/Prediction

(B)

1.2⊢

Current Reactor Neutrino Spectrum Precision

B. Roskovec - UCI

Prediction

Measurement

~95% coverage

- The precise knowledge of the reactor neutrino spectrum is crucial for JUNO: matters in neutrino mass hierarchy determination, measurement of the oscillation parameters, geoneutrino signal measurement, ...
- Solution: JUNO-TAO: a reference detector
 - 30-35 m from one of the Taishan reactor cores (4.6 GW_{th})
 - About 10 m underground but cosmic-ray muon induced background is under control
 - Full coverage SiPM readout (>50% photon detection efficiency)
 - Operating at -50°C to suppress SiPM dark rate
 - New detector concept →
 challenging but feasible
 - R&D and prototyping ongoing
 - Start data taking 2021 (like JUNO)

Superb energy resolution:

- Energy resolution $\sigma_E < 2\% \sqrt{E(MeV)}$ (must and is better than JUNO)
- Provide reactor neutrino spectrum with unprecedented precision
- Expecting fine resolution spectrum structures never observed before

Statistics:

- 2.6 t Gd-doped liquid scintillator
- 1 t fiducial volume
- 2000 $ar{
 u}'s$ /day
- Huge statistics (30×JUNO)

Spent Nuclear Fuel Uncertainty

- Even with JUNO-TAO measurement, we have to face the spent nuclear fuel (SNF) contribution uncertainty (not specially included in the initial JUNO sensitivity study)
- SNF: just used reactor fuel removed and stored in adjacent pools
- SNF still produces electron antineutrinos for some time Rate and energy spectrum shape of SNF comes with uncertainty
- The Daya Bay Experiment example: ~1% contribution in geov region, in DYB treated with 30% uncertainty (*PRL 121, 241805 (2018)*)

Somewhat similar contribution and uncertainty expected also for JUNO!

Conclusions

- JUNO is a multipurpose experiment aiming to determine neutrino mass hierarchy and much more...
- JUNO will collect world leading geoneutrino statistics in ~1/2 year
- JUNO will be the most precise geoneutrino experiment in near future
- Main limitation is a large reactor neutrino flux (7-9 to 1 ratio in region of interest) → irreducible
- Combined with reactor neutrino energy spectrum shape uncertainty (directly from reactor as well as spent nuclear fuel) → hopefully reducible
- JUNO-TAO will play a leading role in the spectrum shape measurement and significantly improve its knowledge
- With a very good precision of the reactor neutrino energy spectrum shape:
 - Measurement of geoneutrinos flux with 5% precision in 10 years
 - Th/U ratio with ~30% precision

Use of Precise Geoneutrino Measurement

Testing local geoneutrino emission models:

- ~50% of the geoneutrino signal comes from nearest $\mathcal{O}(100 \text{ km})$
- Local geological and geochemical models of the crust developed for precise geoneutrino signal prediction
- Tension between global prediction and use of local model prediction:
 - Global model prediction for JUNO: 39.7^{+6.5}_{-5.2} TNU (*V. Strati et al., PEPS 2:5, 2015*)
 - Using local model for JUNO: $49.1^{+5.6}_{-5.0}$ TNU (*arXiv:1903.11871*)
- Precise JUNO measurement will hopefully resolve this

Use of Precise Geoneutrino Measurement

Getting the Earth (mantle) composition \Leftrightarrow **Earth radiogenic power:**

- Interpretation of geoneutrino signal can tell, how many U and Th is in the mantle. How to get it?
 - Subtract crustal contribution from total signal (land-based experiments)
 - Go to the ocean where your signal is up to 80% from the mantle
 see a poster from Dr. Watanabe
- For the former, local model matters see a poster from Prof. Mantovani
- Currently, tension in the measurement interpretations using local models:
 - BOREXINO: 38.2^{+13.6}_{-12.7} TW (*arXiv:1909.02257*)
 - KamLAND: ~14 TW (calculated based on PRD 88(3), 033001, 2013)
- Soon new kid on the block: JUNO

Search for hidden reservoirs using comparison with other experiments (assuming "we know the crust") (see a talk on Wednesday)

. . .

Stay tuned! JUNO will get back to you in a few years