JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO

Zhiwei Li, Ran Han, Ruohan Gao, Andong Wang, Yufeng Li, Yufei Xi, Jingao Liu, Xin Mao, Yao Sun, Ya Xu

JULOC: JUNO LOcal Crust (C also stand for Chinese Group)

2019-10-22 Prague
1. Introduction

2. Methods

3. Multi-scale crustal model in South China
 3.1 Ambient noise tomography of local crustal model
 3.2 Receiver function imaging with dense array
 3.3 Ambient noise tomography with dense array
 3.4 Ambient noise tomography of South China Sea

4. Summary
1. Introduction

Different compositional models of BSE individually predicted different mantle geoneutrino fluxes. The detector cannot separate the mantle contribution from the crust contribution.

To test different compositional models of the mantle, an accurate estimation of the crust geoneutrino flux based on the 3-D crust model in advance is necessary.
A local 3-D crustal Model, including layering, density and 3-D Abundance

Activity and number of produced geoneutrinos

Volume of source unit

\(\Phi_i = A_i \cdot n_i \cdot P_{\nu_e - \nu_e} (E, |\mathbf{L}|) \cdot \int_V \frac{a_i (\mathbf{L}) \cdot \rho_i (\mathbf{L})}{4\pi |\mathbf{L}|^2} \cdot dV \)

Survival probability function

Abundance and density of the source unit

Distance between source unit and detector

Earth structure \((\rho \text{ and } L)\) and chemical composition \((a)\)
- JUNO is located at continental margin, geologically complex.
- The Cathaysia and Yangtze Blocks.
- Crust thickness varies between ~7-40 km, decreases southward, from about 30 km along the coast to 7-8 km in the central basin.
2. Methods

Seismic method is the most effective method to image the 3-D structure of the Earth.
Seismic body wave and surface wave can be used to imaging the 3-D structures of the Earth.
Seismic methods for imaging crustal structures

1) Seismic refraction/reflection profile (layering, V_p)
2) Earthquake traveltime tomography (V_p, V_s)
3) Ambient noise surface wave tomography (V_s)
4) Ambient noise tomography with dense array (V_s to 5 km depth)
5) Receiver function imaging with dense array (V_s and Moho)
1) Seismic refraction/reflection profile (layering, V_p)

highest resolution, but very expensive, TNT explosion/vibrator are needed.

No more new seismic reflection profiles in South China.

Yu et al 2018

Hao et al 2014

South China
2) Earthquake traveltime tomography (Vp, Vs)

Low-cost, high-resolution seismic imaging method, both Vp and Vs structures can be obtained. But need enough local earthquake and seismic stations.
In south China, no enough local earthquakes or regional earthquake in surrounding areas for earthquake tomography

M>7 Earthquake distribution in the last 100 years
3) Seismic ambient noise tomography (Vs)

Seismic surface waves can be obtained with seismic ambient noise data, expecting high-resolution 3-D crustal model beneath seismic array.
Sensitivity kernel of surface waves to the crustal structures
4~45 sec surface waves have good constraints of V_s down to ~ 50 km.
4) Ambient noise tomography with dense array

(Vs to 5 km depth)

With dense seismic array (~ a few km interstation distance), short period surface waves can be extracted from ambient noise. Shallow Vs down to ~ 5 km depth can be imaged.

Low-cost 3-C seismometer
5) Receiver function imaging with dense array (Vs and Moho)

Receiver functions (RFs) are time series, computed from three-component seismograms, which show the relative response of Earth structure near the receiver.

RFs can provide good constraints on Vs and Moho of crust.
Empirical relations for crustal velocity and density

\[\rho (\text{g/cm}^3) = 1.6612V_p - 0.4721V_p^2 + 0.0671V_p^3 - 0.0043V_p^4 + 0.000106V_p^5. \]

\[V_p (\text{km/sec}) = 0.9409 + 2.0947V_s - 0.8206V_s^2 + 0.2683V_s^3 - 0.0251V_s^4. \]
3. Multi-scale crustal model in South China

~1000 seismic stations in China
~450 stations in and around South China, ~70 km interstation distance
3.1 Ambient noise tomography of local crustal model

With continuous seismic waveforms from 450 seismic stations in South China, ~100,000 noise cross-correlation functions (NCF) are obtained to extract the surface wave dispersions.
Observed Group velocity

Predict Group velocity

(a) 8 sec 14 sec

(b) 8 sec 14 sec

Group velocity maps at different times and locations.
Observed Phase velocity

Predict Phase velocity
3-D high-resolution Vs structures in the South China

spatial resolution: ~ 40 km in horizontal and 3~4 km in vertical directions.
Cross-sections for shear-wave velocity and density structures in NW-SE directions through the JUNO site

White dashed lines are Moho from gravity and DSS. Uncertainties for Vs and density structures.
3.2 Receiver function imaging with dense array

260 km profile with 110 seismometers and ~ 2.5 km interstation distances crossing JUNO.

spatial resolution: 2~3 km in both horizontal and vertical directions
H-k method for crustal thickness and average Vp/Vs along profile
common conversion point stacking, and joint inversion of surface wave and RFs for 2-D crustal structures.
3.3 Ambient noise tomography with dense array

Two dense arrays ~ 100 km away from JUNO (Huizhou, Guangdong).
Small basin structures are obtained with high-resolution (~ 1 km)
Basin basement estimated from isosurface of Vs beneath dense array
3.4 Ambient noise tomography of South China Sea

Large-scale surface wave tomography, ~ 300 km horizontal resolution. Deep to 60 km. A model better than CRUST1.0 for South China Sea.
Vs model deep to 60 km depth.
Cross-sections of Vs model

dashed line: CRUST1.0 Moho; solid line: Moho in this study
4. Summary

- Local high-resolution (~ 40 km) crustal model in South China is obtained with data from ~ 450 seismic stations, higher resolution than CRUST1.0 global model.

- Local models for crust and sediment basins with much higher resolution can be obtained by deploying more dense temporary seismometers.

- We are planning to update the local crust model by joint inversion with more geophysical data (e.g., seismic and gravity data). Testing algorithms in Sichuan basin, then apply to South China.
Trials of joint inversion of seismic and gravity data in Sichuan Baisn

Seismic data only Joint inversion Real model

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
Thanks!
Backup
Why a new local model for South China

Global CRUST1.0 model has low-resolution (~1° x 1°, ~100 km). It also is a compiled model based on many independent models. A new local refined 3-D crustal model with higher resolution is needed for South China around the JUNO.
Using Automatic Frequency-Time Analysis method (AFTAN), totally 41,041 dispersion curves are extracted from 76,689 Rayleigh wave dispersion curves after quality control.

Dispersion curves of Rayleigh waves

Numbers of dispersion curves at 4-45 s
Surface wave tomography with Fast March Method (FMM)

Resolution is better than ~50 km for most areas.

Checkerboard resolution tests for 0.8x0.8 degree
Better crustal thickness model is used to build starting model for 3-D Vs model inversion.

Crustal thickness from CRUST1.0 model

Crustal thickness model in this study
Consistency shows the inverted 3-D model can fit the observations pretty good.
Phase velocity from data

Phase velocity from inverted 3-D model
Using bootstrap method to evaluate the model uncertainty. It is less than ~ 1% for most areas at depths from 0 ~ 60 km.
Uncertainties along the vertical cross sections.
The Density Uncertainty

The density uncertainty are from Vs uncertainty by Error Propagation

The uncertainty of depth is not considered for this moment
Appendix C: Geoneutrino Signal, Mass of Uranium and Radiogenic Heat

This relationship between geoneutrino signal and masses of heat generating elements like uranium will be developed in the following way:

1. After excluding the region, the proximity argument provides for the signal from the rest of the world:

\[S_{RW}(U) = (4.2 + 14.76 \times m(U)) \pm (2.56 + 2.61 \times m(U)) \]

where the signal is in TNU, the mass is in units of 10^{17} kg and the interval within the ± sign corresponds to the full range of models which have been considered (Fiorentini G et al. 2007).

2. The regional contribution, calculated in the previous section is:

\[S_{reg}(U) = 21.40 \pm 3.98 \]

3. Combining the regional contribution and rest of the world result, then the uranium geoneutrino signal as a function of uranium mass in the Earth is given by:

\[S(U) = S_0(U) \pm \delta(U) \]

Where \(S_0(U) = 25.6 + 14.76 \times m(U) \) and \(\delta(U) = \sqrt{(2.61 \times m(U) - 2.56)^2 + 3.98^2} \)

From the signal of U, the Th contribution can be calculated based on an assumed chondritic Th/U ratio. Given the abundances of U and Th and mass of a given layer in the Earth, the radiogenic heat production can be calculated as:

\[H_R(U + Th) = 9.85 \times m(U) + 2.67 \times m(Th) \]
This Study

<table>
<thead>
<tr>
<th>Layer</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Crust</td>
<td>3.2</td>
<td>15</td>
</tr>
<tr>
<td>Middle Crust</td>
<td>0.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Lower Crust</td>
<td>0.07</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Global Average

<table>
<thead>
<tr>
<th>Layer</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Crust</td>
<td>2.7</td>
<td>10.5</td>
<td>R&G, 2003, 2014</td>
</tr>
<tr>
<td>Middle Crust</td>
<td>1.3</td>
<td>6.5</td>
<td>R&G, 2003, 2014</td>
</tr>
<tr>
<td>Lower Crust</td>
<td>0.2</td>
<td>1.2</td>
<td>R&G, 2003, 2014</td>
</tr>
</tbody>
</table>
Data points in each cell
Error estimate

For the six units with more than 10 samples (Table 3), the distribution of U and Th concentrations is graphically evaluated using univariate statistics by means of frequency histograms. In order to discriminate the normal and lognormal distributions, the Kolmogorov-Smirnov (K-S) statistical test was applied, providing a p-value for rejecting the null hypothesis. The mean and standard deviation are calculated and used for the geochemical modeling of the other three units (CM, OW, and CT), characterized with less than five samples, corresponding approximately to 1% of the total volume of the CUC.

(Strati et al., 2017)
Error estimate

(Strati et al., 2017)

<table>
<thead>
<tr>
<th></th>
<th>U ± σ (µg/g)</th>
<th>Th ± σ (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.7 ± 1.0</td>
<td>2.7 ± 6.0</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-1.9</td>
</tr>
<tr>
<td></td>
<td>2.3 ± 4.0</td>
<td>8.0 ± 15.3</td>
</tr>
<tr>
<td></td>
<td>-1.5</td>
<td>-5.3</td>
</tr>
<tr>
<td></td>
<td>1.2 ± 0.6</td>
<td>5.9 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>3.3 ± 0.3</td>
<td>15.0 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>3.1 ± 0.6</td>
<td>8.2 ± 1.0</td>
</tr>
<tr>
<td></td>
<td>2.7 ± 3.4</td>
<td>10.9 ± 17.3</td>
</tr>
<tr>
<td></td>
<td>-1.5</td>
<td>-6.7</td>
</tr>
<tr>
<td></td>
<td>1.1 ± 0.01</td>
<td>5.2 ± 1.5</td>
</tr>
<tr>
<td></td>
<td>1.1 ± 0.1</td>
<td>5.1 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>1.8 ± 1.1</td>
<td>56.9 ± 27.3</td>
</tr>
</tbody>
</table>

每个格子的误差部分关联，部分独立