Core Constraints on Deep Earth Evolution

Chris Davies

Monica Pozzo
David Gubbins
Dario Alfe
Sam Greenwood

Img. Cred.
Ed Garnero
What are the power sources for the dynamo over the last 3.5 Gyrs?
Generating the Geomagnetic Field

- Dynamo is powered by cooling – heat flow Q_{cmb} across core-mantle boundary
- Power needed to sustain the dynamo constrains Q_{cmb}

Glatzmaier & Roberts (1997)

Power to sustain the dynamo constrains rate of core cooling and inner core growth.
Precipitation may occur from core formation and could significantly lower core cooling rate (O’Rourke & Stevenson (2016); Badro et al (2016, 2018); Du et al (2017, 2019)) [NB – SiO$_2$ and FeO could also precipitate (e.g. Hirose et al, 2017)]
Q_{CMB} and Temperature in Time

Gubbins et al (2004); Nimmo (2015); Labrosse (2015); Davies (2015)

- Outer core
- Inner core
- Q_{c}
- Q_{s}
- Q_{a}
- Q_{l}
- Q_{r}
- Q_{p}

$Q_{cmb} = Q_{s} + Q_{L} + Q_{c} + Q_{r} + Q_{P} = A \frac{dT_{c}}{dt} + Q_{r} + Q_{p}$

- secular
- gravitational precipitation
- latent
- radiogenic

- Core cooling rate (dT_{c}/dt) determined from Q_{cmb} (imposed by mantle convection)
Q_{CMB} and Temperature in Time

Gubbins et al (2004); Nimmo (2015); Labrosse (2015); Davies (2015)

$Q_{cmb} = Q_s + Q_L + Q_c + Q_r + Q_p = A \frac{dT_c}{dt} + Q_r + Q_p$

$E_J(B) - E_a(k) = E_S + E_L + E_g + E_r + E_P = B \frac{dT_c}{dt} + E_r + E_P$
Thermal Conductivity (k)

Pure Fe:
De Koker et al (2012)

Mixtures:
Pozzo et al (2013);
76.8%Fe–23.2%O Gomi et al (2013, Open)
77.5%Fe–22.5%Si Gomi et al (2013, Closed)

“Low” values
Stacey & Anderson (2001)
Stacey & Loper (2007)
Konopkova et al (2016)
Xu et al (2018, hcp iron)

- ‘High’ k values are 2-3 times larger than ‘low’ values
- k varies significantly with depth
Model core in isolation

Constraint: $E_J > 0$ for last 3.5 Gyrs

Lower(ish) bound on cooling rate: set $E_J = 0$ before inner core formation

How do the high conductivity estimates affect models of Earth’s core evolution?

- Inner core evolution
- Core temperatures
- CMB heat flow

Omit precipitation at first..

$$Q_{cmb} = A \frac{dT_c}{dt} + Q_r + Q_P$$

$$E_J(B) + E_a(k) = B \frac{dT_c}{dt} + E_r + E_p$$
The Core Model

\[\Delta \rho = 0.8 \pm 0.2 \text{ g/cc} \]
(Masters & Gubbins, 2003)

The inner core boundary is indicated on the graph.
The Core Model

\[\Delta \rho = 0.8 \pm 0.2 \text{ g/cc} \] (Masters & Gubbins, 2003)

The Core Model

\[\Delta \rho = 0.8 \pm 0.2 \text{ g/cc} \] (Masters & Gubbins, 2003)

<table>
<thead>
<tr>
<th>(\Delta \rho) (kg/m(^3))</th>
<th>%Fe</th>
<th>%O</th>
<th>%Si</th>
<th>(T_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>82</td>
<td>8</td>
<td>10</td>
<td>5900</td>
</tr>
<tr>
<td>0.8</td>
<td>79</td>
<td>13</td>
<td>8</td>
<td>5580</td>
</tr>
<tr>
<td>1.0</td>
<td>81</td>
<td>17</td>
<td>2</td>
<td>5320</td>
</tr>
</tbody>
</table>

Stacey & Anderson (2001)
Stacey & Loper (2007)
Lower mantle solidus T (Andrault et al., 2011)

Davies (2015, PEPI)
\[\Delta \rho = 0.6 \text{ gm cm}^{-1} \]
\[\Delta \rho = 0.8 \text{ gm cm}^{-1} \]
\[\Delta \rho = 1.0 \text{ gm cm}^{-1} \]

High \(k \), \(h = 0 \)
High \(k \), \(h = 300 \text{ppm} \)
\(k = 46 \text{ W m}^{-1} \text{ K}^{-1} \), \(h = 0 \)

Davies et al, (Nat. Geosci., 2015)
Gravitational energy released depends on C_m, mass precipitated per unit T drop
Add precipitation with $C_m = 0.61 \times 10^{-5} / K$ to previous models.
Assume precipitation occurs over last 3.5 Gyrs
\[\Delta \rho = 0.6 \text{ gm cc}^{-1} \]
\[\Delta \rho = 0.8 \text{ gm cc}^{-1} \]
\[\Delta \rho = 1.0 \text{ gm cc}^{-1} \]

High \(k, h = 0 \)

High \(k, h = 300 \text{ppm} \)

\(k = 46 \text{ W m}^{-1} \text{ K}^{-1}, h = 0 \)

\(C_m = 6 \times 10^{-6} \text{ K}^{-1}, h = 0 \)

\(C_m = 1 \times 10^{-5} \text{ K}^{-1}, h = 0 \)
Conclusions

Maintaining a marginal dynamo prior to inner core formation with high k requires

- Primordial core temperature > present estimates of lower mantle solidus
- Inner core age < 1 Gyr (300-500 Myrs without precipitation; 500-800 Myr with precipitation)

Minimum changes over 4.5 Gyrs:

- T_{cmb}: 600-1800 K
- Q_{cmb}: 2-7 TW

Minimum present-day Q_{cmb}~8 – 9 TW

ICB density jump and C_m are main uncertainties in current models