

Università Dipartimento degli Studi di Fisica e Scienze della Terra

Andrea Serafini, Baldoncini M., Cabrera A., Chen M., Grassi M., Mantovani F., Strati V., Wagner S. (On behalf of LiquidO collaboration)

Detecting ⁴⁰K geoneutrinos with Liquid

di Ferrara

Why is ⁴⁰K so important?

- 1. K, together with U and Th, is one of the three **Heat Producing Elements** (HPEs) that contribute to the 47 ± 2 TW heat power.
- 2. According to Earth models, ⁴⁰K radiogenic power varies from **2.0-4.7 TW**.
- 3. Our planet seems to contain **10%-30% K respect to** the enstatitic (EH) and carbonaceous (CI) **chondrites** meteorites, respectively.
- 4. Two theories on the fate of the mysterious **"missing K"** include **loss to space** during accretion or **segregation into the core**, but no experimental evidence has been able to confirm or rule out any of the hypotheses, yet.
- 5. Being moderately volatile, K is representative of the depletion of volatile elements on Earth. Volatiles' abundances are required to understand deep H₂O cycle and ⁴⁰K-⁴⁰Ar system in the Earth.

A direct measurement of ⁴⁰K geoneutrinos would be a breakthrough in the comprehension of the Earth's origin and composition.

Earth evolution

1st differentiation

Primitive Mantle (PM) $[M_{PM} \sim 68\% M_{Earth}]$ Outer Core (OC) $[M_{OC} \sim 31\% M_{Earth}]$ Inner Core (IC) $[M_{IC} \sim 1\% M_{Earth}]$

Siderophile elements (chemical affinity with Fe) in the Core

> **Lithophile elements** (chemical affinity with O) in the Lithosphere (e.g. U, Th, K)

2nd differentiation

Lithosphere [M_{Lith} ~2% M_{Earth}]
 Mantle [M_{Mantle} ~66% M_{Earth}]
 OC+IC [M_{Core} ~32% M_{Earth}]

Convective and tectonic processes: formation of new crust (oceanic crust) and recycling of continental crust (up to 10 times)

A Standard Model of the Earth

Earth has a well-established layered structure, visible from its density profile:

Bulk Earth's mass composition

About 0.02% of Earth's mass is made out of radioactive **Heat Producing Elements (HPEs).**

The most important for activity, abundances and half-life time (comparable to Earth's age) are:

- Uranium U (M_{U} ~10⁻⁸ M_{Earth})
- Thorium Th (M_{Th}~10⁻⁸ M_{Earth})
- Potassium K ($M_{K} \sim 10^{-4} M_{Earth}$)

The main reservoirs of the Earth

Despite deep Earth's structure is well understood, its chemical composition is not. Samples from Lithosphere permit to study its compositions with a statistical significance.

Bulk Silicate Earth (BSE) Models

The Primitive Mantle's composition is described by the paradigm of the BSE.

Among the several models proposed, these are the ones predicting the **minimum**, the **standard** and the **maximum** values for HPEs' masses

Cosmochemical Model (CCM)

• Enstatitic composition

• Low HPEs content

Geochemical Model (GCM)

Carbonaceous composition

• Medium HPEs content

Geodynamical Model (GDM)

- Based on Earth dynamics
- High HPEs content

	ССМ	GCM	GDM
M(U) [10 ¹⁶ kg]	4.8	8.1	14.1
M(Th) <i>[10¹⁶ kg]</i>	17.4	32.3	56.5
M(K) [10 ¹⁹ kg]	58.9	113.0	141.2

Individual models' uncertainties are typically ~20%, of second order compared to a factor ~3 variability among models.

Geoneutrinos: main physical properties

- Geoneutrinos are $\bar{\nu}_e$ produced in naturally occurring β^- decays of HPEs in the Earth.
- HPEs release heat together with geo- $\bar{\nu}_e$ (ϵ) in a well-fixed ratio.
- They can cross the entire planet **almost without interacting**, bringing instantaneous information on the Earth's composition.
- Geo- $\bar{\nu}_e$ from ⁴⁰K could represent an important tool thanks to their **high luminosity**.

Decay	Τ _{1/2} [10 ⁹ y]	ε(ν̄) [10 ⁷ kg ⁻¹ s ⁻¹]	E _{max} ($ar{ u}$) [MeV]
238 U $\rightarrow ^{206}$ Pb + 8 α + 6 β^{-}	4.47	7.5	3.36
232 Th $\rightarrow ^{208}$ Pb + 6 α + 4 β^{-}	14.0	1.6	2.25
$^{40}\text{K} \rightarrow ^{40}\text{Ca} + e^- + \bar{\nu_e} $ (89%)	1.28	23.2	1.31

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected by IBD** in **~kton** Liquid Scintillation Detectors.

 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

Detection requires the coincidence of 2 delayed light signals.

It does not permit to observe ${}^{40} ext{K}-ar{
u}_e$

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected by IBD** in **~kton** Liquid Scintillation Detectors.

 $\bar{\nu}_e + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

Detection requires the coincidence of 2 delayed light signals.

It does not permit to observe ${}^{40} ext{K}-ar{
u}_e$

In order to detect ${}^{\rm 40}{\rm K}{\text - }\, \bar{\nu_e}$ we could use:

$$\bar{\nu}_e + {}_{Z+1}^A Y \to {}_Z^A X + e^+ - \mathsf{E}_{\mathsf{th}}$$

We shall require:

- E_{th} < 1.3 MeV
- High cross-section
- High Y natural isotopic abundance

Inverse Beta Decay (IBD) detection

Geoneutrinos are **detected by IBD** in **~kton** Liquid Scintillation Detectors.

 $\bar{\nu_e} + p \rightarrow n + e^+ - 1.806 \text{ MeV}$

Detection requires the coincidence of 2 delayed light signals.

It does not permit to observe ${}^{40} ext{K}-ar{
u}_e$

Transparent vs. opaque detector

Very long scattering length (~ 10 m)

- Scintillation light reaches the surrounding 10³-10⁴ PMTs
- Slow time resolution (~ ns)
- Poor spatial resolution on light deposition (~ 10 cm)
- High photon detection efficiency (~ 20%)

- The light is extracted by an array of optical fibers connected to SiPMs
- Fast time resolution (~ 0.3 ns)
- Excellent spatial resolution on light deposition (~ 1 cm)
- Poor photon detection efficiency (~ 5%)

Detecting e⁺ from ⁴⁰K geonu in LiquidO

IBD target isotopes for ⁴⁰K detection

Data from ENSDF database

Target process	Isotopic abundance [%]	E _{th} [MeV]	Log <i>ft</i>
$^{1}H \rightarrow ^{1}n$	99.99	1.806	3.0
$^{3}\text{He} \rightarrow ^{3}\text{H}$	1.34 · 10 ⁻⁴	1.041	3.1
$^{14}N \rightarrow ^{14}C$	99.64	1.178	9.0
$^{35}CI \rightarrow ^{35}S$	75.76	1.189	5.0
⁶³ Cu → ⁶³ Ni	CO 1F	1.089	6.7
⁶³ Cu → ⁶³ Ni*	69.15	1.176	5.0
⁷⁹ Br → ⁷⁹ Se	50.00	1.173	10.8
$^{79}Br \rightarrow ^{79}Se^*$	50.69	1.268	5.0
106 Cd $\rightarrow ^{106}$ Ag	1.25	1.212	4.1
¹⁵¹ Eu → ¹⁵¹ Sm	47.01	1.099	7.5
$^{151}Eu \rightarrow ^{151}Sm^*$	47.81	1.266	5.0

IBD cross-sections on single target isotopes

IBD cross-sections weighted with isotopic abundance

³He, which seemed the perfect candidate, is disfavored by its abundance

 ³⁵Cl has both a low threshold and a good weighted cross-section

 ⁶³Cu seems to be as promising as ³⁵Cl, but not equally reliable (*ft* not experimentally measured)

Building geoneutrino signals

The ingredients for modeling the three geoneutrino life stages are:

- production inside the Earth
- propagation to the detector site
- **detection** in liquid scintillator detectors

 $S_{i,n} \propto Sp_i(E) \otimes \Phi_i(m, \vec{r}) \otimes P_{ee}(E, \vec{r}) \otimes \sigma_n(E) \otimes N_{target,n} \otimes T$

Nuclear • $Sp_i(E) = \overline{v}_e$ emission spectra where *i* = ²³⁸U, ²³²Th, ⁴⁰K

- $\Phi_i(m_i, \vec{r})$ = unoscillated $\bar{\nu}$ flux at surface, where m_i is the mass of the *i*-th upp in a distance \vec{r} . where m_i is the mass of the *i*-th HPE placed at
- $N_{target, n}$ = number of target nuclei where nDetector runs over the IBD target candidates
 - T = acquisition time

- $P_{ee}(E, \vec{r}) = \bar{\nu}_e$ survival probability phisics $< P_{ee} > = 0.55$ for $|\vec{r}| > 50$ km
 - $\sigma_n(E) = IBD$ cross-section on nucleus target n

⁴⁰K geoneutrino expected signals

- Signals are expressed in TNU: 1 geoneutrino event per 10³² element target per year
- The signal variability range embraces all possible geochemical models and potassium distribution in the Earth.
- Present geoneutrino signals measured in Borexino and KamLAND on ¹H are S(U+Th)~40 TNU

	S(⁴⁰ K) [TNU]		
Target	Gran Sasso	Kamioka	
⁶³ Cu	0.10 [0.06, 0.13]	0.07 [0.05, 0.10]	
³⁵ Cl	0.09 [0.06, 0.12]	0.07 [0.05, 0.09]	
¹⁰⁶ Cd	4.9 [3.2, 6.5]× 10 ⁻³	3.7 [2.4, 4.9]× 10 ⁻³	
⁷⁹ Br	8.1 [4.4, 10.8]× 10 ⁻⁴	6.0 [3.3, 8.1]× 10 ⁻⁴	
¹⁵¹ Eu	3.1 [2.0, 4.1]× 10 ⁻⁴	2.3 [1.5, 3.1]× 10⁻⁴	
³ He	1.6 [1.0, 2.1]× 10⁻⁴	1.2 [0.8, 1.6]× 10⁻⁴	
¹⁴ N	7.7 [5.0, 10.1]× 10 ⁻⁶	5.8 [3.7, 7.6]× 10⁻ ⁶	

Expected statistical uncertainties in a ³⁵Cl loaded LiquidO

- **Passive scheme**: mix of chlorine (C_2Cl_4) and LAB (Cl weight fraction up to 85%)
- Active scheme: chlorine-based scintillators such as dichlorobenzene C₆H₄Cl₂ (Cl weight fraction of 48%)

Detecting geoneutrinos in a ³⁵Cl loaded LiquidO

x [cm]

x [cm]

IBD(³⁵Cl)

IBD-proton

Detecting ⁴⁰K geoneutrinos in a ³⁵Cl loaded LiquidO

Take away messages

- K is essential in understanding Earth's **thermal evolution** and **volatility** pattern. A direct ⁴⁰K- $\bar{\nu}_e$ detection would rule out exotic scenarios on the fate of **"missing K"**.
- Considering geochemical and geophysical uncertainties we estimated that the expected ⁴⁰K geo-ν
 e signal at surface varies of a factor x2 according to different Earth's compositional models.
- LiquidO enables a **clear identification of single positrons** from both the time pattern and the spatial topology of the event \rightarrow Detection of 40 K- $\bar{\nu}_e$ via CC now possible!!
- At the present time, K- $\bar{\nu}_e$ remains undetected. A list of seven candidate isotopes (³He,¹⁴N,³⁵Cl,⁶³Cu,⁷⁹Br,¹⁰⁶Cd, ¹⁵¹Eu) suitable for ⁴⁰K- $\bar{\nu}_e$ IBD detection have been identified.
- Considering IBD cross sections and isotopic abundances, ${}^{63}Cu$ and ${}^{35}Cl$ resulted the **best candidates**. \rightarrow The poor reliability of ${}^{63}Cu \log ft$ value calls for refined nuclear physics inputs
- A 50 kton (150 kton) LiquidO detector would detect 40 K- $\bar{\nu}_e$ with 3 σ (5 σ) significance in 10 years. It would also enable sub-percent uncertainties on U and Th geoneutrino detection.

Than⁴⁰Ks for your attention

