Anti-neutrino Directional Measurement

Research Center for Neutrino Science, Tohoku University
Hiroko Watanabe

October 21-23, 2019, Prague
Contents

1. Introduction
2. Motivations of Anti-neutrino Directional Measurement
3. Detection Principle
4. Technical Development
5. Summary
Neutrino Geoscience: Current and Future

what we need
- improved accuracy of measurement
- modelling
- directional sensitive detector
- new type detector

detector in the Ocean

current generation
- total radiogenic heat in the Earth
- Th/U ratio

next generation
- resolving vertical and horizontal flux differences
- distinguishing mantle contribution
- detecting K geo-neutrino

what we learn

first measurement in **2005**
what we need
improved accuracy of measurement & modelling

directional sensitive detector
detector in the Ocean

new type detector

current generation

what we learn

first measurement in 2005

total radiogenic heat in the Earth

Measuring

Th/U ratio

Measuring

resolving vertical and horizontal flux differences

distinguishing mantle contribution

Measuring

detecting K geo-neutrino

next generation
Neutrino Detectors

- IceCube
- Borexino
- KamLAND
- JUNO
- Daya Bay
- Super Kmiokande
- SNO+
- Double Chooz
- OBD (Hanohano)
- Jinping
- ANDES
- Baksan
Neutrino Detectors: Target

- IceCube
- Borexino
- KamLAND
- JUNO
- Jinping
- Daya Bay
- SNO+
- Double Chooz
- OBD (Hanohano)
- Water/Ice
- Super Kmiokande
- Liquid Scintillator
- ANDES
- Baksan
<table>
<thead>
<tr>
<th>experiments</th>
<th>Water: Super-K (Ice-Cube, etc.)</th>
<th>Liquid Scintillator (LS): KamLAND (Borexino, SNO+, JUNO, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>target volume</td>
<td>50,000 t (larger)</td>
<td>1,000 t</td>
</tr>
<tr>
<td>light</td>
<td>Cherenkov</td>
<td>Scintillation</td>
</tr>
<tr>
<td>light yield</td>
<td>6 p.e./MeV</td>
<td>400 p.e./MeV (blighter)</td>
</tr>
<tr>
<td>measurement target</td>
<td>atmospheric, solar, astrophysical, etc</td>
<td>solar, geo, reactor, supernova, etc</td>
</tr>
<tr>
<td>reaction</td>
<td>scattering</td>
<td>scattering/ inverse β decay (background reduction)</td>
</tr>
</tbody>
</table>
Water vs Liquid Scintillator

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Liquid Scintillator (LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiments</td>
<td>Super-K (Ice-Cube, etc.)</td>
<td>KamLAND (Borexino, SNO+, JUNO, etc.)</td>
</tr>
<tr>
<td>target volume</td>
<td>50,000 t</td>
<td>1,000 t</td>
</tr>
<tr>
<td>light</td>
<td>Cherenkov</td>
<td>Scintillation</td>
</tr>
<tr>
<td>light yield</td>
<td>6 p.e./MeV</td>
<td>400 p.e./MeV</td>
</tr>
<tr>
<td></td>
<td>higher energy ν</td>
<td>lower energy $\nu, \bar{\nu}$</td>
</tr>
<tr>
<td>measurement target</td>
<td>atmospheric, solar, astrophysical, etc</td>
<td>solar, geo, reactor, supernova, etc</td>
</tr>
<tr>
<td>reaction</td>
<td>scattering</td>
<td>scattering/ background reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inverse β decay</td>
</tr>
<tr>
<td>directionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>Water-based LS</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>experiments</td>
<td>Super-K (Ice-Cube, etc.)</td>
<td>KamLAND (Borexino, SNO+, JUNO, etc.)</td>
</tr>
<tr>
<td>target volume</td>
<td>50,000 t</td>
<td>1,000 t</td>
</tr>
<tr>
<td>light</td>
<td>Cherenkov</td>
<td>Scintillation</td>
</tr>
<tr>
<td>light yield</td>
<td>6 p.e./MeV</td>
<td>400 p.e./MeV</td>
</tr>
<tr>
<td></td>
<td>higher energy</td>
<td>lower energy ν, $\bar{\nu}$</td>
</tr>
<tr>
<td>measurement target</td>
<td>atmospheric, solar, astrophysical, etc</td>
<td>solar, geo, reactor, supernova, etc</td>
</tr>
<tr>
<td>reaction</td>
<td>scattering</td>
<td>scattering/ inverse β decay</td>
</tr>
<tr>
<td>directionality</td>
<td></td>
<td>this study</td>
</tr>
</tbody>
</table>
1. Introduction

2. Motivations of Anti-neutrino Directional Measurement

3. Detection Principle

4. Technical Development

5. Summary
1. large size detector (1kt~)

distinguish mantle contribution

separate reactor neutrino background

What We Can Measure?

KamLAND

Borexino
2010 2013 2015 2019

Crust: closest 500 km
Crust: rest of the world

Mantle
High-H
Mid-H
Low-H

What We Can Measure?

1. large size detector (1kt~)

geo-neutrino

(1) **distinguish mantle contribution**

(2) separate reactor neutrino background

geo-neutrino angular distribution @Kamioka

- Upper Continental Crust
- Lower Continental Crust
- Oceanic Crust
- Upper Mantle
- Lower Mantle

crust+mantle

crust

simulation

5-years, 50 kt Li-loaded LS detector @Kamioka
What We Can Measure?

1. large size detector (1kt~)
 - **geo-neutrino**
 1. distinguish mantle contribution
 2. separate reactor neutrino background

 ![Graph showing the difference between Geo $\bar{\nu}_e$ and Reactor $\bar{\nu}_e$]

 - Reactor neutrinos: useful for **neutrino property study**
 - Reactor neutrinos are the most significant background for geo-neutrino
2. small size detector (~200 kg) our first target

(1) establishment of new technology using neutrino sources
 sources: reactor neutrino, radioactive neutrino source

(2) application to neutron detector and reactor monitor

What We Can Measure?
1. Introduction

2. Motivations of Anti-neutrino Directional Measurement

3. Detection Principle

4. Technical Development

5. Summary
Detection Principle

Problems
- Neutron loses directional information before being captured by proton.
- Delayed signal (2.2 MeV γ-ray) confuses capture point
Reaction in Liquid Scintillator

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

prompt signal

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

prompt signal

$e^- (0.511 \text{MeV})$

delayed signal

$e^+ (0.511 \text{MeV})$

delayed signal

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^+ \theta_e \gamma (0.511 \text{MeV})$

$\nu_e \rightarrow e^- \theta_e \gamma (0.511 \text{MeV})$
νe + P → e-γ

Asymmetry = \frac{A_+ - A_-}{A_+ + A_-}

A_+ 0 \leq \cos \theta \leq 1
A_- -1 \leq \cos \theta \leq 0

<table>
<thead>
<tr>
<th>Source</th>
<th>Asymmetry</th>
<th>miss-identification rate (θ>90°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li LS</td>
<td>0.391</td>
<td>30.4%</td>
</tr>
<tr>
<td>10B LS</td>
<td>0.148</td>
<td>42.6%</td>
</tr>
<tr>
<td>KamLAND LS</td>
<td>0.079</td>
<td>46%</td>
</tr>
</tbody>
</table>
Experiment & Idea

Experiment : Double Chooz (2011~, France)
- 8.2 t, Gd-loaded LS
- detectors
 - near : L=400m, 300ν/day
 - far : L=1050m, 40ν/day (L: distance from reactors)

very high statistics of reactor ν

Idea : gaseous time projection chamber

elastic scattering, gas (e.g. CF$_4$) filled chamber

figures from T. Brugière, AAP 2015

~3500 events analysis

500 tonne-years, T > 200 keV

simulation

technically very difficult to construct the detector

$^{40}\text{K geo-ν}$
$^{\text{Solar ν}}$
$^{\text{U,Th geo-ν}}$
$^{\text{Reactor ν}}$
1. Introduction

2. Motivations of Anti-neutrino Directional Measurement

3. Detection Principle

4. Technical Development

5. Summary
WANTED

- 6Li loaded liquid scintillator \(\rightarrow\) completed!
- high vertex resolution detector \(\rightarrow\) ongoing

This setup is ongoing.

target: measure two related events of prompt and delayed events of anti-neutrino measurement
- We need high vertex resolution to separate 2 vertexes.

- required resolution : \(~1.5\text{cm}\)
 (ref: Photo Multi Plire (PMT) \(~10\text{cm}\))
High Vertex Resolution Detector

We designed mirror for 30L detector.

Vertex Resolution Check

- Image Size [mm]
- Distance [mm]
- Vertex resolution < 3.2 mm
- (required: < 15 mm)

Optimize materials

- Number of detection p.e.
 - 2.6 p.e.
 - (assuming anti-neutrino delayed event)

- Refraction ratio [%]
 - Ar (Cr coat): 45.3%
 - Steel: 55.4%
 - Al: 78.9%
 - Al evaporation on acrylic board: 89.8%
2D photon sensors are tested.

Multi-Anode PMT
- Hamamatsu H9500
- 5cm x 5cm
- 256 channels
- Detection of weak signal
- Data readout performance

Multi-Pixel Photon Counter
- Detection of weak signal
- Data readout performance
- Lower temperature

Cooling System
- Target: <2 MHz
- 95% reduction
Prototype Detector: 30L LiLS + 2 Imaging Detectors

3D images were reconstructed by two imaging detectors.

3D Image measurement

example) muon track

Photon Sensor Data 1

Photon Sensor Data 2

Imaging Detector 1

Imaging Detector 2

Imaging Detector A

Imaging Detector B

30L Li LS
Prototype Detector: 30L LiLS + 2 Imaging Detectors

muon track

We measured 3D images of scintillation light.
Geoneutrinos bring unique and direct information about the Earth’s interior and dynamics.

Directional sensitivity will be efficient technology for geo-neutrino measurement.
- Distinguish mantle contribution
- Separate reactor background

New measurement technologies
- 6Li loaded liquid scintillator can have good directional sensitivity.
 - We have developed the 6Li loaded LS by the original method.
- Imaging detector have designed. It can achieve high vertex resolution.
- Prototype detector : test of detection technology
 - 3D images of muon track and 60Co γ-ray points have been measured.
 - Next target : 3D image of correlated two events (assuming anti-neutrino signals)