Reference Models for Lithospheric Geoneutrino Signal

S. A. Wipperfurth¹, O. Šrámek², W. F. McDonough^{1,3}.

with additional contributions from Laura Sammon (UMD)

¹Department of Geology, University of Maryland, College Park, MD 20742, USA ²Department of Geophysics, Faculty of Mathematics and Physics, Charles University, Prague, Czech

Republic

³Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai

980-8578, Japan

Weekly geoneutrino teleconference: particle physics & geology Nodes: Sudbury, Beijing, California, Prague, Sendai, Maryland

21 October 2019

group!

Constructing a 3-D reference Earth model for geoneutrino emission assigning chemical and physical calculation states to Earth voxels $\frac{\mathrm{d}\phi(E_{\nu},\mathbf{r})}{\mathrm{d}E_{\nu}} = A \frac{\mathrm{d}n(E_{\nu})}{\mathrm{d}E_{\nu}} \int_{V_{\oplus}} \mathrm{d}^{3}\mathbf{r}$ $\frac{a(\mathbf{r}'(\rho)\mathbf{r}')P(E_{\nu},|\mathbf{r}-\mathbf{r}'|)}{4\pi(\mathbf{r}-\mathbf{r}')^2}$ density abundance detector – source separation distance dr da φ 0.0 -0.5 $r \sin \phi d\theta$ -11 - 1 Geoneutrinos and Quantitative Geochemical Modeling 5

Estimating the distribution and abundance of U & Th in the Earth

Continental crustal thickness

Predictions by different global geophysical models

- CRUST 2.0
- **CRUST 1.0**
- **LITHO 1.0**

Avg cont. crust 41.0 ± 6.2 Christensen & Mooney 1995

Geoneutrinos and Quantitative Geochemical Modeling

21 October 2019

Estimating Crustal Contributions to Geoneutrino Signal

Crustal signal is predicted by using...

- <u>for the Upper Crust</u>: assume Rudnick and Gao (2003)
- <u>for the deep Crust</u>: global density and velocity models CRUST1.0/LITHO1.0,
- and compositional data for amphibolilte and granulite facies rocks
- THEN calculate density and K,Th,U abundances and geoneutrino flux

... recent focus on Deep Crust (middle and lower)

SiO₂ vs Vp: granulite facies rocks

Amphibolite and granulite facies rocks middle and lower crust samples

... on average most samples are mafic to intermediate, not felsic

21 October 2019

Geoneutrinos and Quantitative Geochemical Modeling

Amphibolite and granulite facies rocks middle and lower crust samples

... on average most samples are mafic to intermediate, not felsic

21 October 2019

U content of deep crust: global crust models

HPE of deep crustal rocks: U vs Th

21 October 2019

21 October 2019

Geoneutrino signal calculated from global crust models

			Geoneutrino Flux (TNU)				Overlapping Coefficient		
	Detector		CRUST2	CRUST1	LITHO1	$ \Delta $	L1,C1	L1,C2	C1,C2
Negligible diffe	KamLAND	Bulk CC	$22.7^{+5.9}_{-4.7}$	$24.2_{-5.2}^{+6.7}$	$26.4\substack{+7.1 \\ -5.6}$	15	85	74	89
		Total	$34.7^{+5.8}_{-5.0}$	$36.6\substack{+6.5 \\ -5.5}$	$37.9\substack{+6.6\\-5.6}$	9	92	78	87
	Borexino erence in crustal models		$30.5^{+8.1}_{-6.4}$	$29.9\substack{+8.0 \\ -6.3}$	$30.5\substack{+7.7 \\ -6.2}$	2	96	98	96
			$43.2^{+8.0}_{-6.7}$	$42.9\substack{+7.9 \\ -6.6}$	$42.1_{-6.2}^{+7.3}$	1	95	94	98
	SNO+		$37.3^{+10.2}_{-8.0}$	$32.9\substack{+9.6\\-7.4}$	$33.8\substack{+9.6\\-7.5}$	13	95	84	80
			$49.8^{+9.7}_{-8.1}$	$45.7^{+9.3}_{-7.7}$	$46.8^{+9.4}_{-7.8}$	8	95	86	82
	JUNO		$28.1\substack{+7.5 \\ -5.9}$	$28^{+7.7}_{-6.1}$	$29.2\substack{+8.0 \\ -6.3}$	4	93	93	99
			$40.5_{-6.3}^{+7.4}$	$40.7\substack{+7.6 \\ -6.4}$	$40.4\substack{+7.4 \\ -6.3}$	1	98	99	99
	Jinping		$42.5^{+11.5}_{-9.1}$	$47.2^{+12.7}_{-10.0}$	$48.5^{+13.1}_{-10.3}$	13	96	78	83
			$55.0\substack{+10.9\\-9.1}$	$59.9^{+12.1}_{-10.1}$	$59.9^{+12.2}_{-10.1}$	9	100	81	81
	Hawaii		$2.3\substack{+0.7 \\ -0.5}$	$2.1\substack{+0.6 \\ -0.5}$	$2.3\substack{+0.7\\-0.5}$	6	90	93	83
			$12.9^{+2.8}_{-2.3}$	$12.9\substack{+2.8 \\ -2.3}$	$12.8^{+2.7}_{-2.3}$	1	98	99	99

21 October 2019

			CRUST2.0		CRU	ST1.0	LITHO1.0		
	Layer	$\sim ho~({ m g/cm}^3)$	d (km)*	$M (10^{21} \text{ kg})$	d (km)*	M (10 ²¹ kg)	d (km)*	M (10 ²¹ kg)	
CC	Sed	2.2	2.18 ± 2.1	0.8 ± 0.1	1.64 ± 2.2	0.7 ± 0.1	$1.54\ {\pm}2.0$	$0.7~{\pm}0.1$	
	UC	2.75	11.60 ± 3.9	7.0 ± 0.9	11.71 ± 4.0	6.3 ± 0.8	12.79 ± 4.1	$6.9\ {\pm}0.8$	
	MC	2.84	11.18 ± 3.4	7.2 ± 0.9	11.57 ± 3.0	6.4 ± 0.8	13.06 ± 3.8	$7.3\ {\pm}0.9$	
	\mathbf{LC}	3.02	9.93 ± 2.9	6.7 ± 0.8	10.73 ± 2.7	6.2 ± 0.8	$12.22~{\pm}3.6$	$7.2~{\pm}0.9$	
	Bulk CC	2.9	34.25 ± 8.8	21.8 ± 2.6	35.53 ± 7.6	$19.6~{\pm}2.4$	39.60 ± 9.1	$22.2 \ {\pm} 2.6$	
OC	Sed	1.9	1.86 ± 0.2	0.3 ± 0.0	1.90 ± 0.1	$0.4~{\pm}0.1$	1.90 ± 0.1	$0.4\ {\pm}0.1$	
	\mathbf{C}	2.9	6.80 ± 1.5	5.6 ± 0.7	$7.82\ {\pm}2.9$	$7.1 \ \pm 0.9$	10.46 ± 4.3	$9.2~{\pm}1.1$	
Mantle	LM	3.34	$139.9~{\pm}75$	102.8 ± 53	$139.5~{\pm}75$	$88 \pm \! 43$	$114.3~{\pm}82$	63 ± 7.5	
	DM	4.4	1966	3149.9	1966	3168.5	$1987 \pm \! 84$	3187.3	
	EM	5.4	750	754	750	754	750	754	
	BSE	4.45	2891	4035	2891	4038	2891	4036	

Physical properties of crustal models

21 October 2019

importance of accuracy

Our latest model for predicting the mantle signal

measured KL signal (Watanabe, 2016) measured BX signal (Agostini et al 2015) Predicted signals (Wipperfurth etal 2019)

21 October 2019

Geoneutrinos and Quantitative Geochemical Modeling

Conclusions

- Contributions to the geoneutrino signal:
 - 40% local crustal model
 - 35% global continental lithosphere
 - 25% mantle
- Estimated total signal uncertainties 20%, with 6% from geophysics + 14% from geochemistry
- Calculations using CRUST2.0, CRUST1.0 and LITHO1.0 yield physical uncertainties that overlap each other
- Bulk continental crust has (7 ± 2) TW