OffShell Theory Status

Nikolas Kauer, Raoul Röntsch

16th Workshop of LHC Higgs Cross Section Working Group
16 October 2019

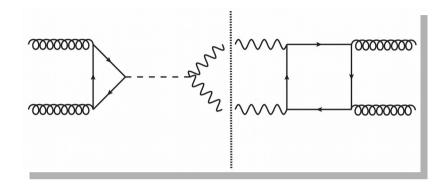
Introduction

- Focus on processes with sizeable contribution from offshell Higgs.
- E.g: *gg* → *H* → *VV* :

10% of events above the $2m_{V}$ threshold.

[Kauer, Passarino '12]

- Allows the exploration of the Higgs properties in a new kinematic regime:
 - Width [Caola, Melnikov '13]
 - Couplings
 - Unitarization properties
 - ...


Ongoing Work

- Higher-order corrections:
 - Finite top mass effects at NLO.
 - Quark-gluon channel at NLO.
 - NLO+PS?
 - EW corrections?
- Interpretations:
 - Model dependence of Higgs width/couplings.
 - New directions.

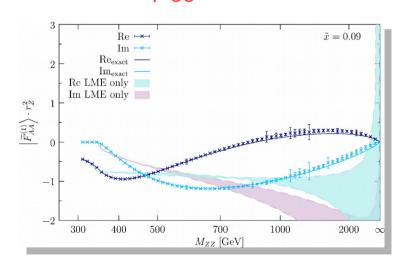

Higher Order Corrections

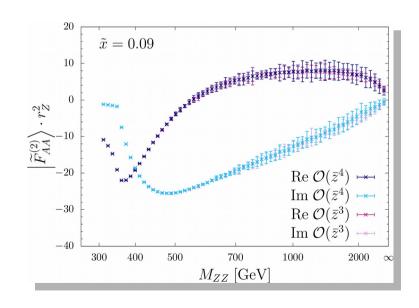
Top mass dependence at NLO

- Offshell regime requires:
 - Full top quark mass dependence for amplitudes;
 - Interference between signal and background

 At NLO, need two loop gg → VV with mass dependence: very challenging and still not known!

- Approximations:
 - Expansion in $1/m_t$ valid in $m_H < m_{VV} < 2m_t$. [Campbell *et al.* '16; Caola *et al.* '16]
 - → NLO corrections ~ 50%-80%
 - Expansion in $1/m_t$ + Padé Approximation. [Campbell *et al.* '15]


Top mass dependence at NLO


Recent progress:

• Expansion in $1/m_t$ + Threshold expansion + Padé Approximation:

[Gröber, Maier, Rauh 1908.04061]

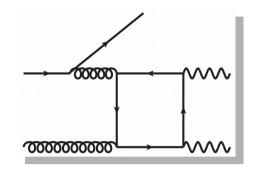
- Inclusion of threshold expansion provides new analytic information -- improves Padé approximation.
- Method tested for 2-loop corrections to $gg \rightarrow HH$ against full results from [Borowka et al. '16].
- Method works well for one-loop $gg \rightarrow VV$.
- **NEW**: two-loop gg → VV form factors

Progress towards full two-loop amplitude

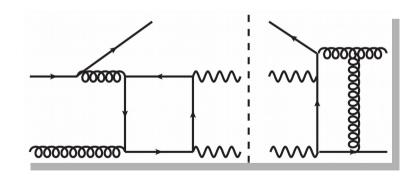
A. von Manteuffel and B. Agarwal, work in progress

$gg \rightarrow ZZ$ at 2-loops

Construct the amplitude and decompose into sum of all possible Lorentz structures and their 'form factors'


$$\mathcal{A}^{\mu\nu\rho\lambda} = \sum \, p_i^{\,\mu} \, p_i^{\,\nu} \, p_k^{\,\rho} \, p_l^{\,\lambda} \, A_{ijkl} \, + \dots$$

- Solve linear system of equations to relate the 'form factors' to the original Feynman integral
- Use Integration By Parts identities to reduce the number of integrals to a basis set
- Rotate the basis integrals to a set of **finite integrals** \Rightarrow Much better behaved numerically
- **Evaluate** the finite integrals **numerically** using 'sector decomposition' (plus any needed improvements)


[Talk by B. Agarwal, May 2019]

Quark-Gluon Effects

 Quark-gluon channel for loop diagrams opens up at NLO.

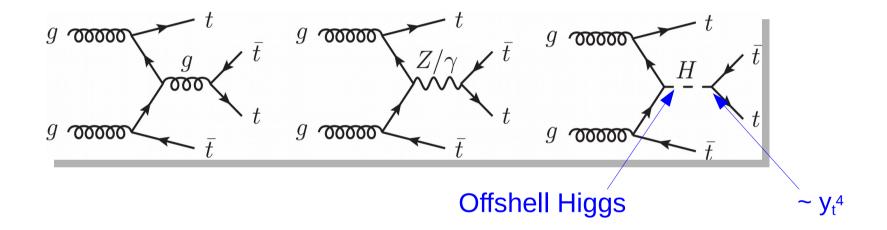
- Effects on interference included by [Campbell et al. '16].
- Included in background gg → VV (massless loops)
 [Grazzini, Kallweit, Wiesemann, Yook, 1811.09593] [Talk by J.Y. Yook, May 2019]
- Interference between loop-induced corrections and corrections to treelevel processes.
 - Numerical impact?
 - Impact on scale variation?

Interpretations

Higgs Width and Offshell Couplings

- E.g. width extraction from comparison of offshell and onshell production model dependent.
- How can we best exploit the offshell data?
- Simultaneously constrain widths and BSM couplings [Ulascan's talk]:

$$A(H \to VV) \propto \left[a_1^{VV} - \frac{\kappa_1^{VV} q_1^2 + \kappa_2^{VV} q_1^2}{\left(\Lambda_1^{VV}\right)^2} - \frac{\kappa_3^{VV} (q_1 + q_2)^2}{\left(\Lambda_Q^{VV}\right)^2} \right] m_{V1}^2 \epsilon_{V1}^* \epsilon_{V2}^*$$
$$+ a_2^{VV} f_{\mu\nu}^{*(1)} f_{*}(2) \mu\nu + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}_{*}(2) \mu\nu$$


[Anderson et al. '13]

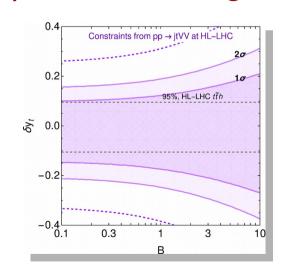
Other ideas?

New Directions (I)

Top Yukawa and width constraints in tttt production

[Cao, Chen, Liu '16; Cao, Chen, Liu, Zhang, Zhang, 1901.04567]

- Combination with e.g. GF and ttH production constrain top Yukawa, CP mixing of Higgs, Higgs width...
- See Ulascan's talk.


New Directions (II)

Higgs interference effects on heavy Higgs states

[Kauer, Lind, Maierhöfer, Song, 1905.03296] [Talk by N. Kauer, May 2019]

- Large loop interference effects for $gg(\rightarrow h_1, h_2) \rightarrow WW$.
- Large tree and larger loop interference effects in $gg(\rightarrow h_1,h_2) \rightarrow t\bar{t}$.
- "Higgs interference is a constituent part of BSM signal."
- "Higgs without Higgs": look at Higgs couplings through high energy processes with longitudinal vector bosons.

[Henning, Lombardo, Riembau, Riva, 1812.09299] [Talk by B. Henning, May 2019]

Summary

- Progress on top mass dependence for NLO calculations:
 - Use of 1/m_t + threshold expansion + Pade approximation.
 - Progress towards full two-amplitudes with top mass dependence.
- Quark-gluon effects now known for gg → VV background.
 - Impact on scale dependence? Other qg channels?
- Still no NLO+PS results for offshell gg(→H) → VV.
- New possibilities beyond $gg(\rightarrow H) \rightarrow VV$, e.g. $t\bar{t}t\bar{t}$.

THANK YOU FOR YOUR ATTENTION