#### VH STXS Uncertainties: Status/Plans

Thomas Calvet, Giancarlo Ferrera, Chris Palmer, Carlo Pandini, Emanuele Re, Frank Tackmann, Ciaran Williams

#### 16 October 2019 Princeton University



#### Overview

- Summary of current prescription (stage 1.1, arXiv:1906.02754)
  - QCD perturbative uncertainties treated
    - → Next step: EW, QCD non-perturbative
  - ➔ Use-case: ATLAS VHbb 2016+2017 STXS
    - https://indico.cern.ch/event/740110/contributions/3225257/ attachments/1768332/2872545/calvet\_VHbbSTXSunc\_181210.pdf
  - Discussion from CMS cross check during the summer
- Plans and on-going efforts
  - Making/using public MC using setup as close as possible to ATLAS/ CMS setup (MC code, PDF, mass/width parameters, etc)
  - Building a public tool to evaluate uncertainties and correlation scheme given arbitrary VH prediction
- Other open topics

# From Signal Strength to STXS



- The VH STXS measurements in ATLAS/CMS are/will be driven by the Higgs to bb excess in VHbb search.
- ATLAS produced the first major VH results of Run 2 in late 2018 using the same data (2015-2017) used for the observation of VH and Hbb.

Chris Palmer (Princeton)

LHXSGW General Assemble

# STXS Stage 1.1 Targets

- Divide signal into bins of VPT and number of additional jets.
  - The solid-line boxes are the optimistic set of distinguishable processes.
  - The dashed lines are meant for the estimation of uncertainties on a finer granularity



# ATLAS binning in first result

In reality bins must be merged or left unmeasured because of experimental limitations and/or low signal yields.

Stage 1.1

 $p_T^V$ 0

75

150

 $\mathbf{250}$ 

400

 $\infty$ 

0-jet

1-jet  $\geq$  2-jet

**Chris Palmer** (**Princeton**)

0-jet

 $q\bar{q}' \rightarrow WH$ 



Perfect reconstruction would reduce the problem to optimizing significance in each bin.



## **Discrimination VPT Built-in**

- The VHbb machine learning (ML) outputs already leverage the transverse momentum of the vector boson.
- Not pictured for CMS but also true in CMS analysis.
- There is also some difference (less) in discriminator shapes based on N<sub>AddJets</sub>.



# Migration in full Stage 1.1



Chris Palmer (Princeton)

LHXSGW General Assemble

## Merging bins/deriving uncertainties

- The full set of stage 1.1 migration uncertainties are used to derive the subsequent STXS bin uncertainties.
- This procedure applies equally to QCD, PDF and α<sub>s</sub> uncertainties.



The total uncertainty is the sum of the  $\delta_{group}$ s.

Step 1

h

a

# Summary of Uncertainties



Chris Palmer (Princeton)

LHXSGW General Assemble

16 October 2019

### CMS cross check and discussion

- Earlier this year CMS (Adinda de Witt) produced a cross check of a QCD scale uncertainty comparing to public documents and found some disagreement.
- Upon sharing the plots and discussing the procedure, the main difference appeared to be if distributions were renormalized after reweighting by QCD scale weights or not.
  - ATLAS did not re-normalize after re-weighting
  - CMS DID re-normalize.
- Although both prescriptions have merit, the current recommendation is to NOT re-normalize.
- On the CMS side, Adinda de Witt and Aliya Nigamova (DESY) are moving forward on testing this prescription and making an initial pass on VH group MC as a cross check.

## Preliminary checks with public MC

- Emanule Re produced some signal MC with POWHEG MINOL HZJ showering with pythia and computed differential cross sections per QCD variation.
- Thomas ran a script inspired by the ATLAS code to compute the migrations.



Chris Palmer (Princeton)

## Preliminary checks with public MC

Not every plot has perfect agreement, but the scales are the right size and this was really a very quick test with very promising validations!

Comparing scale variation in inclusive pTV bins

#### **ATLAS Public Results**

Preliminary results with public MC



# Plans for official tools

#### Objective

- Toolkit both for theorists (to test new theories) and experimentalists (to understand assess variations)
- Input theory prediction
- Output nominal cross sections with systematic variation in STXS bin

#### Process

- **↗** Shower LHE with HEPMC product
- Compute STXS bin with Rivet
- VH program to compute variations
- Expected versatility
  - One default showering, a few pre-configured options, configuration option for experts

#### As similar tools exist (e.g. for VBF) we would consider integration.

Chris Palmer (Princeton)

LHXSGW General Assemble

# Looking forward

- Consider the impact of multijet ggZH0+1jet MC on QCD uncertainties across STXS bins (e.g. Njet bins)
  - See Carlo's VH talk from this morning
- Add higher order prediction in QCD (e.g. NNLOPS MC or NNLO code)
- EW uncertainties
- Consider VH binning for analyses targeting other Higgs' decays (beyond VHbb)
  - Looking toward Run 3, are there experimental modes with emerging sensitivity?
  - Add CP sensitive bins in VH? E.g.  $d\phi(I,I)$
  - **7** Low Higgs PT spectrum for self-coupling sensitivity in VH (e.g.  $H\gamma\gamma$ )

# Backup

## MC Settings

- NNPDF31 NNLO (306000)
- **7** Higgs
  - mass 125, width = 0.00407
- **7** Z
  - mass 91.1876, width = 2.4952
- 🛪 Тор
  - **7** mass 172.5

#### ATLAS STXS Systematic Breakdown

| Measurement region                                                     | SM pi | redic | ction | Result |   |     | Stat. unc. |     | Syst. unc. [fb] |     |          |     |      |     |
|------------------------------------------------------------------------|-------|-------|-------|--------|---|-----|------------|-----|-----------------|-----|----------|-----|------|-----|
| $( y_H  < 2.5, H \rightarrow b\bar{b})$                                | [fb]  |       |       | [fb]   |   |     | [fb]       |     | Th. sig.        |     | Th. bkg. |     | Exp. |     |
| 5-POI scheme                                                           |       |       |       |        |   |     |            |     |                 |     |          |     |      |     |
| $W \rightarrow \ell \nu$ ; 150 < $p_{\rm T}^V$ < 250 GeV               | 24.0  | ±     | 1.1   | 20     | ± | 25  | ±          | 17  | ±               | 2   | ±        | 13  | ±    | 9   |
| $W \rightarrow \ell \nu; p_{\rm T}^V > 250 \text{ GeV}$                | 7.1   | ±     | 0.3   | 8.8    | ± | 5.2 | ±          | 4.4 | ±               | 0.5 | ±        | 2.5 | ±    | 0.9 |
| $Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 {\rm GeV}$   | 50.6  | ±     | 4.1   | 81     | ± | 45  | ±          | 35  | ±               | 10  | ±        | 21  | ±    | 19  |
| $Z \rightarrow \ell \ell, \nu \nu; 150 < p_{\rm T}^V < 250 {\rm GeV}$  | 18.8  | ±     | 2.4   | 14     | ± | 13  | ±          | 11  | ±               | 1   | ±        | 6   | ±    | 3   |
| $Z \rightarrow \ell \ell, \nu \nu; p_{\rm T}^V > 250  {\rm GeV}$       | 4.9   | ±     | 0.5   | 8.5    | ± | 4.0 | ±          | 3.7 | ±               | 0.8 | ±        | 1.2 | ±    | 0.6 |
| 3-POI scheme                                                           |       |       |       |        |   |     |            |     |                 |     |          |     |      |     |
| $W \rightarrow \ell \nu; p_{\rm T}^V > 150 { m ~GeV}$                  | 31.1  | ±     | 1.4   | 35     | ± | 14  | ±          | 9   | ±               | 2   | ±        | 9   | ±    | 4   |
| $Z \rightarrow \ell \ell, \nu \nu; 75 < p_{\rm T}^V < 150 \text{ GeV}$ | 50.6  | ±     | 4.1   | 81     | ± | 45  | ±          | 35  | ±               | 10  | ±        | 21  | ±    | 19  |
| $Z \rightarrow \ell \ell, \nu \nu; p_{\rm T}^V > 150 {\rm GeV}$        | 23.7  | ±     | 3.0   | 28.4   | ± | 8.1 | ±          | 6.4 | ±               | 2.4 | ±        | 3.6 | ±    | 2.3 |