LHC HXS WG workshop WG2 summary

J. de Blas M. Delmastro P. Milenovic F. Riva

October 18th, 2019

WG2: Higgs properties

• Topics:

- STXS and Differential observables
- Pseudo Observables
- EFT and BSM interpretations
 Tools

Changes in the convenorship:

- Marco Delmastro
- \checkmark Mingshui Chen \rightarrow Predrag Milenovic
- \checkmark David Marzocca \rightarrow Jorge de Blas

🗸 Francesco Riva

Twiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG2

Roadmap

Торіс	ShortDescription
STXS & differential XS	STXS stage 1.1 TH uncertainties treatment recommendation
STXS & differential XS	STXS stage 1.1 binning recommendation
PO	PO Summary for experiments . Scenarios for h>4l decays. Mapping to other frameworks.
EFT	BSM Benchmarks and mapping to EFT. Determine benchmarks sensitive to differential and coupling measurements, define relevant EFT parameters
EFT	Interpretation Workflow Summary: Processes, Operators and <u>BSM</u> Interpretations
EFT	Fit to STXS using a standardized mapping of STXS stage 1.0
EFT	Global Fit in EFT Framework; inclusion of top and Electroweak measurements
EFT	High-Energy Higgs Probes: Longitudinal multiboson processes as tests of Higgs physics

WG2: what have we been discussing?

3

Experimental summary : Higgs properties

• Higgs boson properties measurements: Reach unprecedented precision

- I0% uncertainty on inclusive production XS and coupling modifiers
- Differential XS measurements extended to additional final states (added HWW)
- STXS implemented in major channels (stage 0, stage 1.1), now used in EFT interpretations

Suggestion:

Compare the EFT sensitivity from STXS vs. differential XS (or dedicated) analyses

Experimental summary : Higgs properties

- Higgs boson properties measurements: Reach unprecedented precision
 - I0% uncertainty on inclusive production XS and coupling modifiers
 - Differential XS measurements extended to additional final states (added HWW)
 - STXS implemented in major channels (stage 0, stage 1.1), now used in EFT interpretations

Constraints on trilinear self-couplings:

- From NLO EW corrections in single Higgs, complement direct measurement in HH channel
- FFT interpretation discussions: joint parallel sessions WG2 HH

de Blas | Delmastro | Milenovic | Riva

In the SM, all scalars belong to the Higgs doublet:

Modifications in Higgs Physics = modifications in EW physics

e.g.

 The same EFT interactions modifying the Higgs properties can be probed in other processes involving EW bosons and benefit from growing with E effects...

• This type of effects and the relevant $2 \rightarrow 2$ processes (where they can be tested) have been already systematically classified for the case of interactions involving the top...

- Next steps
 - General study of high-energy probes of H EFT interactions using longitudinal multi-boson processes
 - ✓ Map process/operators
 - Only a small number of operators enters a given process
 - ✓ EFT Theory @ high-E
 - Preparation of note on "High-Energy Benchmarks"
 - Extend "proof-of-concept" studies presented at WS to more realistic studies
 - More realistic treatment of backgrounds
 - Better understanding signal/background kinematics
 - Explore vector boson polarisation information
 - Include more channels
 - Realistic detector simulations

• ...

• SMEFT parameterization: Include all EFT operators that contribute significantly

- individual processes necessarily have blind directions
- combination of different processes / sectors required

		total $N_f = 3$	WZH pole obs.	
	general	2499	~ 46	
	MFV	~ 108	~ 30	
	$U(3)^{5}$	~ 70	~ 24	
Brivio, Jiang, Trott 1709.06492				

• **SMEFT parameterization:** Include all EFT operators that contribute significantly

• SMEFT tools

- Parameterization of Higgs total width (implemented, important effects)
- Event-by-event reweighting tool (planned to be LHE-based)
 - Ready in ~ 6 months?
 - Modular implementation needed (e.g. should be able to compute weight from LHC input files)

LHC HXS WG2 Summary

ATLAS/CMS EFT parameterization efforts

- Move from SILH to Warsaw basis, from HEL to SMEFTsim model (towards global EFT fit)
- Multiple tools/approaches (and public codes) in ATLAS/CMS

ATLAS/CMS EFT parameterization efforts

- Move from SILH to Warsaw basis, from HEL to SMEFTsim model (towards global EFT fit)
- Multiple tools/approaches (and public codes) in ATLAS/CMS

Acceptance corrections

Can be calculated with Madgraph or analytically, e.g.

$$\left[\frac{2\delta g_{l,ei}^{W,\ell}}{\operatorname{Re}[(g_{L,ej}^{W,\ell})^{SM}]} + \frac{2\delta g_{l,\mu k}^{W,W}}{\operatorname{Re}[(g_{L,\mu l}^{W,\ell})^{SM}]} + 2\left[\frac{\delta M_W^2}{\hat{M}_W^2} - \frac{\delta G_F}{\sqrt{2}} + C_{H,\mathrm{kin}}\right]\right] \int dp s^4 \frac{\mathcal{A}_{WW}^{N_1}}{\mathcal{A}_{WW}^{SM}} + \dots$$
10

Outstanding issue is the EFT modifications to the (four-body) decays

Possible to estimate corrections ad hoc

Preferable for STXS decays to be split into the dominantly measured regions

(or use $H \rightarrow \gamma \gamma$ as denominator)

- Extensive validations for STXS EFT parameterization
- Acceptance effects important for unfolded results need corrections & STXS modifications
 - Full simulation of EFT effects at detector/reconstruction level mitigates problem

LHC HXS WG2 Summary

ATLAS/CMS EFT parameterization efforts

- Move from SILH to Warsaw basis, from HEL to SMEFTsim model (towards global EFT fit)
- Multiple tools/approaches (and public codes) in ATLAS/CMS

Eigenvector decomposition

Production modes only (BRs set to SM values):

Complete tables in backup

Eigenvalue	Eigenvector	
95892.10	$-1.00 \cdot c_{HG}$	From ggF
620	$-0.24 \cdot c_{HW} + 0.13 \cdot c_{Hl3} - 0.95 \cdot c_{Hq3}$	Mix of VBF+V(had)H and V(lep)H
34	$-0.14 \cdot c_G - 0.13 \cdot c_{Hbox} + 0.16 \cdot c_{Hl3} + 0.$	$12 \cdot c_{uH} + 0.82 \cdot c_{uG} - 0.17 \cdot cqq_{11} - 0.40$
	$cqq_{31} - 0.18 \cdot c_{uu1} - 0.11 \cdot c_{qu8}$	From top
10	$-0.64 \cdot c_{HW} + 0.18 \cdot c_{HWB} + 0.23 \cdot c_{Hl3} - $	$0.18 \cdot c_{Hq1} + 0.14 \cdot c_{Hq3} + 0.60 \cdot c_{Hu} - 0.21 \cdot$
	$c_{Hd} - 0.14 \cdot c_{ll1}$	

- Sensitivity to cHG, cHq3, |cuG|, cHW, cHu, cHl3 (potentially cHq1)
- Including the decay brings additional sensitivity to cHW, cHB and cHWB but also stronger correlations

H-> $\gamma\gamma$ (good experimental sensitivity, no affected by acceptance) :

Eigenvalue	Eigenvector
504594	$0.16 \cdot c_{HG} - 0.24 \cdot c_{HW} - 0.84 \cdot c_{HB} + 0.45 \cdot c_{HWB}$ From gg->H-> $\gamma\gamma$
14290	$-0.99 \cdot c_{HG} - 0.14 \cdot c_{HB}$
63	$0.14 \cdot c_{HW} + 0.96 \cdot c_{Hq3} + 0.11 \cdot c_{Hu} + 0.15 \cdot c_{uG} $
7	$-0.11 \cdot c_G + 0.50 \cdot c_{HW} - 0.13 \cdot c_{HB} - 0.11 \cdot c_{Hl3} + 0.11 \cdot c_{Hq1} - 0.18 \cdot c_{Hq3} - 0.26 \cdot c_$
	$c_{Hu} + 0.65 \cdot c_{uG} - 0.13c_{qq11} - 0.32c_{qq31} - 0.14 \cdot c_{uu1}$

9

cHW, cHB and cHWB

- * cHW, cHB and cHWB strongly correlated:

 - Analytic expression for H->γγ decay (CP-even case) width:

$$\frac{\Gamma(H\to\gamma\gamma)}{\Gamma_{\rm SM}(H\to\gamma\gamma)}\approx \left|1+\frac{8\pi^2\bar{v}_T^2}{I^\gamma}C_{\gamma\gamma}\right|^2,\quad {\rm with}\quad C_{\gamma\gamma}=\frac{1}{\bar{g}_2^2}c_{HW}+\frac{1}{\bar{g}_1^2}c_{HB}-\frac{1}{\bar{g}_1\bar{g}_2}c_{HWB},$$

* Sensitive direction is calculated to be 0.27cHW+0.96 cHB

Possibilities to identify flat directions in the EFT fit (helps with the fit convergence)

✓ Next step is to move to SMEFT@NLO (important for loop effects in $H \rightarrow \gamma \gamma$ and $gg \rightarrow H$)

ATLAS/CMS EFT parameterization efforts

- Move from SILH to Warsaw basis, from HEL to SMEFTsim model (towards global EFT fit)
- Multiple tools/approaches (and public codes) in ATLAS/CMS

Strategies

- Two approaches for constructing the signal model ${\bf P}_s$ as a function of observables ${\bf x}$ given coefficients ${\bf c}_j$

In the following slides show concrete examples of both (but not intended to be complete!)
 A. Gilbert (NWU)

HVV anomalous couplings in CMS

- Phys. Rev. D 99, 112003 (2019)
- Construct optimal observables using the <u>MELA</u> technique (public code)

- Simulation using the JHU generator and POWHEG, reweighting to different AC points using MELA
- Signal model construction follows a flexible and extensible approach:

PDFs for each component Normalisation

$$\mathcal{P}_{jk}^{\text{sig/int}}\left(\vec{x}; \vec{\xi}_{jk}, f_{ai}, \phi_{ai}\right) = \sum_{m=0}^{M} \mathcal{P}_{jk,m}^{\text{sig/int}}\left(\vec{x}; \vec{\xi}_{jk}\right) f_{ai}^{\frac{m}{2}} (1 - f_{ai})^{\frac{M-m}{2}} \cos^{m}(\phi_{ai}),$$
3 17/10/19 Mup to 4 A. Gilbert (NWU) 5

- Two strategies for constructing signal model as function of observables and EFT coefficients
 - Pros and cons, both can exist and be combined, as long as certain conventions are followed

• ATLAS/CMS EFT parameterization efforts

✓ Move from SILH to Warsaw basis, from HEL to SMEFTsim model (towards global EFT fit)

CMS

Multiple tools/approaches (and public codes) in ATLAS/CMS

EFT2Obs

• Approach [2] implies finding scaling of each bin **i** as:

$$\sigma_{i} = \sigma_{i}^{SM} + \sum_{j} c_{j}\sigma_{i,j}^{int} + \sum_{jk} c_{j}c_{k}\sigma_{i,jk}^{BSM}, \text{ where j}$$

and k run over all relevant operators
$$\mu_{i} = 1 + \sum_{j} c_{j}A_{i,j} + \sum_{jk} c_{j}c_{k}B_{i,jk}, \text{ relative to}$$

the SM prediction \Rightarrow need to find A_j, B_{jk}

- EFT2Obs Small project started in Les Houches, aims to be usable both inside and outside of the experiments
- Agnostic to specific EFT implementation, easy to implement new models
- Developing solution based on Madgraph5_aMC@NLO + RIVET

UFO model HEL, SMEFTsim etc MG5 Process: ggF, VBF etc EFT2Obs tool

Demo code <u>here</u> Full functionality in development

17/10/19

A. Gilbert (NWU)

A. Gilbert (NWU)

Two strategies for constructing signal model as function of observables and EFT coefficients

17/10/19

11

- Pros and cons, both can exist and be combined, as long as certain conventions are followed
- / Important to have multiple (public) implementations, for complementary and cross-check

LHC HXS WG2 Summary

7

BSM interpretation and tools

EFT interpretation is an intermediate step to easily translate experimental results in terms of (well motivated) new physics scenarios

 ✓ WG2 activities during 2018 focused on preparing a set of BSM benchmarks sensitive to H differential and coupling measurements and their mapping to the EFT.

- ✓ Document has been just finalised
 - LHCHXSWG-2019-006
 - https://cds.cern.ch/record/2694087

BSM Benchmarks for Effective Field Theories in Higgs and Electroweak Physics

D. Marzocca^a, F. Riva^b (Editors), J. Criado^c, S. Dawson^d, J. de Blas^{e,f}, B. Henning^b, D. Liu^g, I. Low^{g,h}, C. Murphy^d, M. Perez-Victoria^c, J. Santiago^c, L. Vecchiⁱ,

 ^a INFN Sezione di Trieste, SISSA, via Bonomea 265, 34136 Trieste, Italy
 ^b Départment de Physique Théorique, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4. Switzerland

^cCAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071, Granada, Spain

^dDepartment of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A.
^eDipartimento di Fisica e Astronomia Galileo Galilei, Universitá di Padova, Via Marzolo 8,I-35131 Padova, Italy

^fINFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy ^gHigh Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA ^hDepartment of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA ⁱTheoretical Particle Physics Laboratory, Institute of Physics, EPFL, Lausanne, Switzerland

Abstract

Effective Field Theories (EFTs) capture effects from heavy dynamics at low energy and represent an essential ingredient in the context of Standard Model (SM) precision tests. This document gathers a number of relevant scenarios for heavy physics beyond the SM and presents explicit expressions for the Wilson coefficients in their low-energy EFT. It includes *i*/weakly coupled scenarios in which one or a few particles of different spins and quantum numbers interact linearly with the SM and generate EFT effects at tree-level, *ii*/ scenarios where heavy particles interact quadratically whereupon the resulting EFT arises only at loop-level and *iii*/ strongly coupled scenarios where the size of Wilson coefficients is controlled by symmetry arguments. This review aims at motivating experimental EFT studies in which only a subset of all possible EFT fits.

BSM interpretation and tools

BSM/EFT matching tools:

 Apart from tools dedicated to implement the EFT parameterization, matching the EFT results with non-minimal BSM scenarios can be greatly simplified using automated tools, e.g. MATCHMAKER (Automated matching at 1-loop)

Extending STXS with final state information

- Motivations
 - Agree on general decay-oriented measurements, as independent as possible on interpretation assumption (as STXS for production)
 - \checkmark POs most general proposal so far, but a few cons
 - Interference terms difficult to treat
 - Meaning not necessarily intuitively or directly connected to observable quantities
 - Covariance matrix of a joined measurement with STXS bins could be insufficient
 - Still missing: something we can all agree upon to use for general Higgs decay measurements
 - Needs to be sufficiently general
 - Suitable to do measurements, e.g. should be closely related to observable quantities
 - If possible, assumptions needed for interpretations should be avoided for the measurements

Extending STXS with final state information

A compromise ?

H→4I :

- 1st Z usually ~ on-shell, mass $m_{12} \sim m_{z}$
- 2nd Z off-shell, mass q²=m₃₄
- STXS for q² dependence: make bins in m₃₄.
 Experiments usually cut m₃₄>~10 GeV
- Within each bin, q² is ~ constant
 - Can chose bins or continuous
 parameters without worry about q² expansion
 - Continuous parameters could be stage 2

$H \rightarrow I \nu I \nu$:

- Want to be as independent from production bins as possible
- Only one Lorentz invariant observable: $m_{\parallel} \rightarrow$ Let's make bins₁₂

 Φ

Φ

Extending STXS with final state information

Even more minimal starting point

We have seen in the EFT discussions that acceptance effects in decays play a role. Treat it like $|Y_{\mu}|>2.5$ in production

- H→ZZ*
 - Add 3 $H \rightarrow ZZ^*$ sub-bins

– H \rightarrow 4l, m₃₄ < X (X ~ 10 GeV, not measured region)

− H \rightarrow 4I, X < m₃₄ < 62.5 GeV

- $H \rightarrow ZZ^* \rightarrow !4I$ (populated in ttH multilepton)

- $H \rightarrow WW^*$
 - Add 4 H \rightarrow WW* sub-bins

- $H \rightarrow IvIv$, $m_{\parallel} < X1$ (X1 ~ 10 GeV, not measured region)

- H \rightarrow IvIv, X1 < m_{II} < X2 (X2 ~ 50-60 GeV)
- $H \rightarrow I \nu I \nu$, X2 < m_{\parallel}

- $H \rightarrow WW^* \rightarrow !I_V I_V$ (populated in ttH multilepton, VHWW) 13

More binning (e.g. angular variable to to define asymmetries) could be added at a later stage

Theory motivations for differential observables

The distinction between hard vs. resolution variables is also natural for BSM sensitivity

- Born/hard variables by definition probe the kinematics of the respective hard *H*+N-jet interaction
 - They are naturally sensitive to (indirect) BSM effects that change the hard interaction structure
 - Requires one to be in the appropriate genuine H+N-jet Born region
- Resolution variables probe the QCD emission pattern
 - They are naturally insensitive to BSM effects

Important to both cover and separate different phase-space regions

- 2D measurement is much more useful than several different but strongly correlated 1D projections
- Measuring as many observables as precisely as possible should have higher priority than combining differential spectra between channels or experiments
- The same for "colour singlet + jets" processes (e.g. Z/W+jets, H+jets, etc.)
- H+jets specific due to ggH loop useful to measure

Differential observables proposal: H + 0 jets

Legend: hard/Born variables, resolution variables Higgs observables

- Higgs: Y_H , p_T^H , eventually 2D $\{Y_H, p_T^H\}$
- $H
 ightarrow \gamma \gamma$ decay:
 - > 2D $\{p_{T1}, p_{T2}\}$ (exposes recoil, asymmetric cuts)
 - equivalent/redundant: $\eta_1, \eta_2, \cos \theta^*, \Delta \eta_{1,2}$
 - ▶ p_{Tt} , ϕ^* (alternatives to p_T^H)
- H
 ightarrow ZZ decay: 2D $\{m_{12}, m_{34}\}, ...$
- $H \rightarrow WW$ decay: 2D $\{p_{T1}, p_{T2}\}, ...$

Direct resolution observables

- $ullet \ p_T^{
 m jet}$, $ilde E_T$
- $\mathcal{T}_{f}^{\text{jet}}, \tilde{\mathcal{T}}_{f}$ (some preference for \mathcal{T}_{C} over $\mathcal{T}_{B}, \mathcal{T}_{f}$ vs. $\mathcal{T}_{f}^{\text{cm}}$?)
- dedicated track-based measurement: E_T , \mathcal{T}_f
- 2D $\{p_T^{ ext{jet}}, \mathcal{T}_f^{ ext{jet}}\}$ or $\{p_T^H, \mathcal{T}_f^{ ext{jet}}\}$
 - ▶ equivalent/redundant: $y^{ ext{jet}}$ for $p_T^{ ext{jet}} \geq p_T^{ ext{cut}}$ or 2D $\{p_T^{ ext{jet}}, y^{ ext{jet}}\}$

"proposal" = suggestion of possible (multidimensional) observables Exact set of variables and binning to be discussed by experiments depending on sensitivity and experimental challenges

Differential observables proposal: H + 1 jets

Possible hard observables

- pp
 ightarrow Hj is 2
 ightarrow 2 (ignoring decay now) ightarrow 3 independent variables
- $p_T^H, Y_H, p_T^{\text{jet}}, y^{\text{jet}}, \mathcal{T}_f^{\text{jet}}, \dots$: already covered, see above
- More options: *m_{Hj}*, ...

Differential observables proposal: H + 2 jets

Here we are running into statistics limitations ...

Hard observables

- Previous variables: p_T^H , p_T^{jet1} , m_{Hj} , p_T^{Hj} , ...: already effectively covered
- $\Delta \phi_{jj}, m_{jj}, \Delta \eta_{jj}, \dots$

Resolution observables

• $p_T^{Hjj}, \Delta \phi_{H,jj}, p_T^{\text{jet3}}, \dots$

In all cases

- Separate genuine H + 2 region from H + 0, 1 regions
- ullet e.g. measure in bins of $p_T^{
 m jet1,2} \leq m_H/2$ and $p_T^{
 m jet1,2} \geq m_H/2$

Next steps

- EFT interpretations
 - Great progress in theory tools and experimental implementations of parametrizations
 - Planning to have follow-up meeting to clarify pending issues
 - Plan to prepare note on high-energy probes of EFT
- STXS
 - ✓ Stage I.2 STXS being finalized
 - ✓ STXS uncertainty paper to appear soon
 - "STXS-in-decay" Stage 0 proposal agreed on
 - Experiments to decide bin boundaries (e.g. m₃₄)
- Differential observables
 - Plan to prepare "recommendation" writeup
 - Experiments to decide minimal set of observables of binning