Summary of the HH parallel sessions

UNIVERSITY of FLORIDA

16th LHC HXSWG workshop CERN, October 18th, 2019

- We organised three parallel session as follows:
 - **joint session HH WG2** : H and HH combined EFT interpretations
 - □ joint session HH WG3 : HH/SH/SS resonant signatures
 - □ **HH session** : MC and technical tools

We organised three parallel session as follows:

- joint session HH WG2 : H and HH combined EFT interpretations
- joint session HH WG3 : HH/SH/SS resonant signatures
- **HH session** : MC and technical tools

Summary of the HH parallel sessions

October 18th, 2019

H and HH EFT interpretations

Which operators enter in HH?

$$O_{t\phi} = y_t^3 \left(\phi^{\dagger}\phi\right) \left(\bar{Q}t\right) \tilde{\phi}, \qquad \text{Inclusive Inclusive Inclusiv$$

All but one operator will receive constraints from another processes (at LO)

E.Vryonidou

HH Subgroup meeting

Luca Cadamuro (UF)

Constraints

. . .

H, Higgs ttH H, Higgs ttΗ

Higgs@NLO) couplings , VH, VBF...

- If a high scale BSM physics exists, it may induce important modifications in HH production
- 5 operators affect HH production, but 4 of them are also constrainable from single Higgs
 - however, in single Higgs further operators must be also constrained simultaneously

Just Ky and Kt?

- A generic EFT also predicts new types of contact interactions
- Depending on the EFT considered, some of these interactions are correlated as they depend on the same operator

c.f. in EWchL (Buchalla et al arXiv:1806.05162) cgghh-Cggh and ct-Ctt are independent, with cgghh, Ctt and Chhh to be determined by HH

E.Vryonidou

Luca Cadamuro (UF)

HH Subgroup meeting

Summary of the HH parallel sessions

October 18th, 2019

Signature-based approach in HH

Shape benchmarks: each point represents a characteristic HH signal shape in the EFT param space

- Instructive about large variations of sensitivity depending on the EFT region probed, captures the contact interactions effects
- Hard to reinterpret in practice

Luca Cadamuro (UF)

B we stand experimentally?

Fitting kappas in H + HH

H + HH combination in a k-framework: floating κ_{λ} , κ_{V} , κ_{f}

- Allows us to get the best out of our current data by combining two types of measurements
- Limited access to possible BSM effects
 - no consistent EFT predicts only SM coupling variations without the new contact interactions
 - combines LO and NLO effects in the two measurements within a k-framework

EFT fit based on operators as the way to get the best out of our H and HH measurements

Summary of the HH parallel sessions

October 18th, 2019

- approach
- Definition of an experimental procedure to perform such fits
 - A very large number of operators must be constrained simultaneously
 - some assumptions needed when selecting which ones to fit in a H + HH combination
 - how to consider operator variations? only one at the time, simultaneous fit, ...

Validity of a κ-framework approach for NLO effects in single H and how to go beyond this

- We organised three parallel session as follows: joint session HH - WG2 : H and HH combined EFT interpretations joint session HH - WG3 : HH/SH/SS resonant signatures
 - **HH session** : MC and technical tools

Summary of the HH parallel sessions

October 18th, 2019

Experimental status of resonant searches

- $X \rightarrow HH$ systematically probed in several channels by both experiments
 - assuming so far a narrow width for spin 0, different assumptions by the experiments for spin 2
- SS probed only in WWWW by ATLAS
- No experimental searches for SH so far

ATLAS

Luca Cadamuro (UF)

Resonant HH Combination

Summary of the HH parallel sessions

October 18th, 2019

- Signatures with extra Higgses and scalars are possible
 - and even more exotics with > 2 scalars in the final states are possible!
- A broad set of models and benchmark points presented in the parallel session
 - cross sections in the range 10 fb 1 pb : we can be sensitive with the full Run 2 LHC dataset
 - full list in slide 18 of Maggie's talk this morning (<u>link</u>)
 - diversity of channels is important: many models have enhanced couplings of new scalars to specific particles

Extra scalars

October 18th, 2019

Summary of the HH parallel sessions

- We have so far discussed benchmark resonant points (i.e. specific mass values and couplings), but benchmark planes would be more interesting for interpretations
 - experimentally, only the masses and width are needed (generally following a model-independent approach). In case no signal is seen and upper limits are set on the xs, these can be used to reinterpret the results
 - some choice of other parameters of models must be done to define suitable planes
- Complementing the set of interesting final states
 - if the extra scalars are "Higgs-like", the current HH main decay channels (bbbb, $bb\tau\tau$, $bb\gamma\gamma$) have high sensitivity
 - decays to e.g. vector bosons can be enhanced in many scenarios: interesting the identify those cases analyses in final states with incomplete reconstruction (with ν) can be easier to generalise from HH to SH/SS

- We organised three parallel session as follows:
 joint session HH WG2 : H and HH combined EFT interpretations
 - joint session HH WG3 : HH/SH/SS resonant signatures
 - □ **HH session** : MC and technical tools

Overview of generators

University of Manchester

- Generators available for several production modes and spin hypotheses
- Experiment choices generally aligned
 - some differences in the choice of hadronisation, but not specific to HH

- This talk reviews status of DiHiggs MC generators ι both experiments
- Discuss commor and differences
- Spot uncovered corners
- Harmonise generators
 - Consistent compariso of future results
 - Smoother (potential) combination effort of **ATLAS+CMS HH**

LHCHXSWG workshop,	Oct 2019
--------------------	----------

Introduction

s the s (HH) used in s
nalities

		AILAO	CIVIO		
	Non-resonant	NLO+FT Powheg-Box-V2 (vary κ _λ)			
	(ggF)	Herwig7	Pythia8		
	Non-resonant	LO MG5_aMC@NLO	(vary $\kappa_V \kappa_{2V}$ and κ_{λ})		
(VBF)	Herwig7	Pythia8			
	Resonant spin0 X→HH	LO MG5_aMC@NLO Heavy scalar, narrow width	LO MG5_aMC(Radion, narrow		
	(ggF)	Herwig7	Pythia8		
6	Resonant spin0 X→HH	NLO Powheg-Box-V2 Heavy Higgs, narrow width	LO MG5_aMC(Radion, narrow		
	(VBF)	Pythia8	Pythia8		
	Resonant spin2	graviton, narrow wic			
ons	X→HH (ggF)	Pythia8			
Resonant spir X→HH	Resonant spin2 X→HH	-	LO MG5_aMC(graviton, narrov		
	(VBF)	-	Pythia8		
X→S	X→SH/SS	LO Pythia8 (ms>mн)	NLO MG5_aMC generalized NM		
		Pythia8	Pythia8		
		-	-		

CNAC

HH MC at NLO with mt effects available and validated in both experiments

sizeable effects w.r.t. the LO one

MC tools

Summary of the HH parallel sessions

October 18th, 2019

Modelling anomalous self-coupling

- Both experiments have implemented and validated a method to model κ_{λ} variations with the NLO MC
 - obtained by summing three HH samples scaled by adequate functions of (κ_{λ} , κ_{t})
 - some finer tuning may be helpful to minimise the statistical error in the procedure

- κ_{λ} values

October 18th, 2019

Summary of the HH parallel sessions

Vector boson fusion

University of Manchester

- The second leading HH • production
- Particularly interesting,
- given the VBF jets

Summary of the HH parallel sessions

Luca Cadamuro (UF)

- Interesting to measure the **VVHH** interaction
 - longitudinal scattering amplitude suppression by C_{v^2} - C_{2v} : large sensitivity to anomalous C_{2V}
 - MC modelling procedure defined inside both experiments
 - already applied for a full Run 2 ATLAS search

- Generation of gg -> HH + jj at LO to better model contamination in the ggF phase space
- Overlap between the V(had)HH and VBF production modes
- Uniforming the choices of the two experiments
 - how would the different hadronisation / uncertainties schemes impact a combination?
 - ATLAS: compare two hadroniser codes with different tune -> systematic variations due to the change of shower method, but also involve changes of other parameters
 - CMS: vary the hadronisation scales, but within the same generators
 - need also to check uncertainties in matching for the new NLO sample

- Broad discussion ongoing on several HH and related topics
- HH as part of a broader Higgs and BSM picture : joint sessions with WG2 and WG3
- Nonresonant HH well advanced in terms of tools NLO MC of ggF, including anomalous klambda NNLO FTapprox cross section prediction modelling of VBF processes
- Good opportunities for resonant signatures with the full Run 2 dataset
 - discussion about the interest of spin 2 HH searches (although model independent approach remains)
 - plan to extend the current searches to SH / SS
 - ongoing work to define benchmark points. Benchmark models / phase space regions to interpret would be good from the experimental point of view

