Off-shell and high mass studies at ATLAS and CMS

Ulascan Sarica¹, Lailin Xu²
¹UCSB, ²BNL

for the WG1 Off-shell Subgroup

Synopsis

- → New publications from CMS and ATLAS on off-shell and high mass Higgs measurements
- → Focus is shifting toward interplay between finding the signal and the role of different BSM couplings
 - → Adding different ways of interpreting the observed data from different angles

- → New avenues of exploration from other final states / analysis groups
 - → Examine 4-top studies as a highlight

Off-shell studies: CMS

4*ℓ*: PRD 99 (2019) 112003

Measure off-shell - sensitive observables and provide interpretations

 \rightarrow Possible BSM couplings, shown as fractional contributions f_{ai} , modify the Higgs contribution and interference with continuum ZZ

Tighter constraints on BSM couplings after including off-shell

 $\Gamma_{\mathsf{H}} \left(\mathsf{MeV} \right)$

12

14

16

Joint constraints on width

Width constraints with different BSM couplings unconstrained

Off-shell studies: ATLAS

Off-shell studies: ATLAS

High mass H → WW search (CMS)

4-top same-sign final state: CMS

4-top same-sign final state: ATLAS

4-top single-lepton and opposite-sign final states: CMS

Measure single-lepton and dilepton BDT (function of b tagging and jet variables) shapes, and provide interpretations

Submitted to JHEP

Limits $\sigma_{t\bar{t}t\bar{t}}$ @ 95% CL: < 33.1~fb (29.4~fb~exp.)Constraints on EFT couplings

$\mathcal{O}^1_{tt} =$	$(\overline{t}_R \gamma^\mu$	$(t_R)(\overline{t}_R)$	$\overline{t}_{ m R} \gamma_{\mu} \overline{t}_{ m R}$	2),		
$\mathcal{O}_{QQ}^{1} = \left(\overline{Q}_{L}\gamma^{\mu}Q_{L}\right)\left(\overline{Q}_{L}\gamma_{\mu}Q_{L}\right),$						
$\mathcal{O}_{\mathrm{Qt}}^{1}=\left(\overline{\mathrm{Q}}_{\mathrm{L}}\gamma^{\mu}\mathrm{Q}_{\mathrm{L}}\right)\left(\overline{\mathfrak{t}}_{\mathrm{R}}\gamma_{\mu}\mathrm{t}_{\mathrm{R}}\right)$,						
$\mathcal{O}_{\mathrm{Qt}}^{8} = \left(\overline{\mathrm{Q}}_{\mathrm{L}}\gamma^{\mu}T^{\mathrm{A}}\mathrm{Q}_{\mathrm{L}}\right)\left(\overline{\mathfrak{t}}_{\mathrm{R}}\gamma_{\mu}T^{\mathrm{A}}\mathfrak{t}_{\mathrm{R}}\right)$						
	$\sigma_k^{(1)}$			$\sigma_{j,k}^{(2)}$		
Operator		\mathcal{O}^1_{tt}	$\mathcal{O}_{\mathrm{QQ}}^{1}$	$\sigma_{j,k}^{(2)}$ $\mathcal{O}_{\mathrm{Qt}}^{1}$	$\mathcal{O}_{\mathrm{Qt}}^{8}$	
\mathcal{O}^1_{tt}	0.39	5.59	0.36	-0.39	0.3	
$\mathcal{O}_{\mathrm{QQ}}^{1}$	0.47		5.49	-0.45	0.13	
$\mathcal{O}^1_{\mathrm{Qt}}$	0.03			1.9	-0.08	
\mathcal{O}_{Ot}^8	0.28				0.45	

Operator	Expected C_k/Λ^2 (TeV ⁻²)	Observed (TeV^{-2})
\mathcal{O}^1_{tt}	[-2.0, 1.9]	[-2.2, 2.1]
$\mathcal{O}_{\mathrm{QQ}}^{1}$	[-2.0, 1.9]	[-2.2, 2.0]
$\mathcal{O}^1_{\operatorname{Qt}}$	[-3.4, 3.3]	[-3.7, 3.5]
\mathcal{O}_{Qt}^8	[-7.4, 6.3]	[-8.0, 6.8]

→ Limits with other couplings unconstrained

$$\sigma_{\mathsf{t}\bar{\mathsf{t}}\mathsf{t}\bar{\mathsf{t}}} = \sigma_{\mathsf{t}\bar{\mathsf{t}}\mathsf{t}\bar{\mathsf{t}}}^{\mathrm{SM}} + \frac{1}{\Lambda^2} \sum_k C_k \sigma_k^{(1)} + \frac{1}{\Lambda^4} \sum_{j \leq k} C_j C_k \sigma_{j,k}^{(2)}$$

9

4-top single-lepton and opposite-sign final states: ATLAS

Summary

- → Presented the off-shell Higgs and high mass studies from CMS and ATLAS
 - → Interplay of signal detection and potential BSM couplings beginning to attract more attention
 - → Important to provide different interpretations to the same observed data
- → Studies from other analysis groups provide valuable interpretations
 - → 4-top production from CMS and ATLAS
 - → Important to watch analyses groups other than Higgs in the experiments
 - → Measurements could also be combined to provide useful and unique constraints for the different interpretations.