

Summary of MSSM group activities

16th Workshop of the LHCHXSWG | 17 October 2019

MSSM subgroup:

T. Barklow (SLAC), <u>A. Gilbert (NWU)</u>, S. Liebler (KIT), P. Slavich (LPTHE Paris), M. Spira (PSI)

Outline

• Main tasks of the group:

- Provide recommendations & guidance for neutral Higgs boson (h/H/A) predictions in the MSSM
- Achieved by the definition of benchmark scenarios exhibiting relevant phenomenology, with predictions for masses, cross sections and branching ratios tabulated

• In 2018 new benchmark scenarios were published

• Main improvements included:

- Updated SM parameters
- N³LO for the light scalar $gg \rightarrow h$ and new bb ϕ predictions
- Improved calculations of Higgs boson masses from NLL and partial NNLL resummation of large logs in latest version of FeynHiggs [Hahn et. al. '13; Bahl Hollik '16 '18; Bahl et al. '16 '17 '18] ⇒ lowers m_h by a few GeV
- Account for latest sparticle exclusions from the LHC

• Not all scenarios finalised this time last year - review the progress today

Overview of benchmark scenarios

• Summary of new scenarios proposed and considered m_A, tanβ ranges:

authors	ROOT files?	\sqrt{s} [TeV]	$\tan\beta$	m_A [GeV]	scenario
[1808.07542]	 ✓ 	8, 13(, 14)	0.5 - 60	70 - 2000	M_{h}^{125}
[1808.07542]	 ✓ 	8, 13(, 14)	0.5 - 60	70 - 2000	$M_{h}^{125}(\tilde{\tau})$
[1808.07542]	V	8, 13(, 14)	0.5 - 60	70 - 2000	$M_{h}^{125}(\tilde{\chi})$
[1808.07542]	V	8, 13(, 14)	1 - 20	100 - 1000	M_h^{125} (alignment)
[1808.07542]	Coming	8, 13(, 14)	5 - 6	$m_{H\pm} = 150 - 200$	M_{H}^{125}
[1808.07542]	soon!	8, 13(, 14)	1 - 20	$m_{H^{\pm}} = 120 - 1000$	$M_{h_1}^{125}(CPV)$
adi et al. '13 '15]	[Maiani et al. '13; Djoua	8, 13(, 14)	1 - 60	130 - 2000	hMSSM
[1901.05933]	V New!	8, 13(, 14)	1-10	70-3000	2HDM-EFT

- ROOT files on the twiki are recommended for use by the experiments
- Two new scenarios $M_{h,EFT}^{125}$ and $M_{h,EFT}^{125}(\tilde{\chi})$ proposed earlier in the year, ROOT files now available
 - Discussed today
- Remaining ROOT files will be available soon

Experimental status

- Complementary constraints from direct search channels and indirectly via h(125) couplings
- High m_A, low tanβ region remains challenging

A. Gilbert (NWU)

Mh¹²⁵ scenario - Recap

• 2HDM-like Higgs sector with \geq 1 TeV SUSY

- Only decays to SM particles for $m_{\phi} < 2 \text{ TeV}$
- Gluino and 3rd gen. squark masses above current LHC bounds
- Large value of $\mu \Rightarrow$ largest SUSY effect in correction of bottom quark Yukawa (Δ_b) for high tan β (~ 0.6)
- Current exclusion from direct heavy Higgs searches (HiggsBounds 5.2.0) and from light Higgs measurements (HiggsSignals 2.2.0) is shown

$$M_{Q_3} = M_{U_3} = M_{D_3} = 1.5 \text{ TeV}, \quad M_{L_3} = M_{E_3} = 2 \text{ TeV},$$

 $\mu = 1 \text{ TeV}, \quad M_1 = 1 \text{ TeV}, \quad M_2 = 1 \text{ TeV}, \quad M_3 = 2.5 \text{ TeV},$
 $X_4 = 2.8 \text{ TeV}, \quad A_4 = A_5 = A_4$

Exclusion from A/H \rightarrow tt

A. Gilbert (NWU)

Results in new scenarios

- Plan is for full Run 2 search results to use the new scenarios almost exclusively
- Some partial dataset interpretations already available:

17/10/19

EFT-based scenarios

Motivation:

- Low $tan\beta$ region interesting to probe: $\phi \rightarrow \tau \tau$ not sensitive, but other channels, e.g. $H \rightarrow hh$, $\phi \rightarrow tt$, $A \rightarrow Zh$ open up
- Challenge is that most scenarios do not _ predict $m_h \sim 125$ GeV in this region
- Two approaches have been considered so far:
 - **hMSSM** fixes $m_h = 125 \text{ GeV}$ everywhere in m_A , tan β - in turn fixes corrections to m_h which, with assumptions, can be used to fix all mass and coupling properties
 - **low-tanβ-high** scenario -[LHCHXSWG-2015-002]: increase M_{SUSY} up to 100 TeV, based on SM EFT. Shown in subsequent work that m_h still too low in parts of the parameter space

A. Gilbert (NWU)

10

tanβ

M_{h,EFT}¹²⁵

- Scenario based on 2HDM EFT with M_{SUSY} up to 10¹⁶ GeV
 - All scalar fermion soft-SUSY breaking masses equal to M_{SUSY}
- All SUSY particles heavy ⇒ Phenomenology similar to a type-II 2HDM

$M_{h,EFT}^{125}(\tilde{\chi})$

Phenomenology features H and A decays to light neutralinos and charginos

M_H¹²⁵ scenario

A. Gilbert (NWU)

Status of the ROOT files

- Models are linked from the twiki page:
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMNeutral
 - Citation guide for analysts is also provided please check this carefully if you make use of the scenarios!

 Access tools (C++/python) are provided to make extracting numerical values straightforward

Planned developments

- Remaining ROOT files will be added to the twiki soon
 - All to be updated to include specific sparticle decay branching ratios currently only the sum available

• A revised hMSSM scenario is well motivated

- Update with the most recent SM input parameters
- Proposal to include one-loop top-quark corrections to the trillinear Higgs self-coupling [1810.10979]
- Motivates a detailed comparison of H→hh BR between EFT and this improved hMSSM approach
- A variant of the M_h¹²⁵ scenario with opposite sign µ is of interest for the A/H→bb channel
 - Δb correction then enhances the Hbb and Abb coupling instead of suppressing them
 - Further studies are ongoing to find a combination of MSSM parameters that maximizes the ratio of the Hbb coupling to the Htautau coupling
- A XSWG note will be prepared to detail the scenarios and how the predictions have been determined
- Timeline: end of 2019 start of 2020

Summary

 Significant progress on finalising the new scenarios proposed in arXiv:1808.07542 and arXiv:1901.05933

- In particular the EFT-based scenario ROOT files are now available
 - M_H¹²⁵ expected very soon
 - Phenomenology of decays to charginos and neutralinos explored in detail

- A long-standing goal is also to provide ROOT files which give the gluon fusion A/ H pT spectrum as a function of m_A, tanβ (see backup)
 - We hope to attract new interest in completing this from within CMS and ATLAS

Backup

M_h¹²⁵ (**τ**̃) scenario

- Scenario with light staus
 - Allows for BR(H/A→τ̃τ̃) ~ 10-20% for high tanβ, decays to SM particles reduced
 - Modifies $h \rightarrow \gamma \gamma$ branching ratio, enhanced at high tan β

 $M_{Q_3} = M_{U_3} = M_{D_3} = 1.5 \text{ TeV}, \quad M_{L_3} = M_{E_3} = 350 \text{ GeV},$

$$\mu = 1 \text{ TeV}, \quad M_1 = 180 \text{ GeV}, \quad M_2 = 300 \text{ GeV}, \quad M_3 = 2.5 \text{ TeV},$$

$$X_t = 2.8 \text{ TeV}, \quad A_b = A_t, \quad A_\tau = 800 \text{ GeV}.$$

$M_{h^{125}}(\tilde{\chi})$ scenario

• Scenario with light electroweakinos

- Opens significant BR(H/A $\rightarrow \tilde{\chi}_i \tilde{\chi}_j$), up to 80% for m_A > 500 GeV and 5 < tan β < 10
- $H^+ \rightarrow \tilde{\chi}^0 \tilde{\chi}^+$ can be a dominant channel for M_{H^+} > 600 GeV, but experimentally challenging

$$M_{Q_3} = M_{U_3} = M_{D_3} = 1.5 \text{ TeV}, \quad M_{L_3} = M_{E_3} = 2 \text{ TeV},$$

$$\mu = 180 \text{ GeV}, \quad M_1 = 160 \text{ GeV}, \quad M_2 = 180 \text{ GeV}, \quad M_3 = 2.5 \text{ TeV},$$

$$X_t = 2.5 \text{ TeV}, \quad A_b = A_\tau = A_t$$

17/10/19

$_{7} = 6.25 \text{ TeV}.$

A. Gilbert (NWU)

17

 In a general 2HDM the alignment limit, where one Higgs has SM-like couplings, usually features decoupling:

M_h¹²⁵ (alignment) scenario

- Lightest CP-even h associated with SM Higgs
- Other Higgs bosons significantly heavier
- Scenarios proposed that feature alignment *without* decoupling
- This version keeps the SM-like Higgs as h
- Under tension from vacuum stability

$$M_{Q_3} = M_{U_3} = M_{D_3} = 2.5 \text{ TeV}, \quad M_{L_3} = M_{E_3} = 2 \text{ TeV},$$

$$\mu = 7.5 \text{ TeV}, \quad M_1 = 500 \text{ GeV}, \quad M_2 = 1 \text{ TeV}, \quad M_3 = 2.5 \text{ TeV},$$

 $A_t = A_b = A_\tau = 6.25 \text{ TeV}$.

CP-violating scenario

- h, H, A mix to three mass eigenstates h_{1,2,3} through phase in trilinear coupling A_t
- Parameters chosen to have strongest interference in region close to the current exclusion in other benchmarks
- Model is now under tension from latest EDM measurements [Nature 562, 355-360 '18]
- Interference factors for I→h_i→f process calculated:

$$\eta_{\rm IF} = \frac{2 {\rm Re}[A_{h_2} A_{h_3}^*]}{|A_{h_2}|^2 + |A_{h_3}|^2}$$

$$\begin{split} M_{Q_3} &= M_{U_3} = M_{D_3} = M_{L_3} = M_{E_3} = 2 \text{ TeV}, \\ \mu &= 1.65 \text{ TeV}, \quad M_1 = M_2 = 1 \text{ TeV}, \quad M_3 = 2.5 \text{ TeV}, \\ |A_t| &= \mu \cot \beta + 2.8 \text{ TeV}, \quad \phi_{A_t} = \frac{2\pi}{15}, \quad A_b = A_\tau = |A_t| \ . \end{split}$$

Fuchs, Weiglein '16 '17

A. Gilbert (NWU)

bbH production

- Progress has been made in matching 4FS and 5FS calculations
 - Up to now we have relied on the "Santander" empirical matching scheme

Two new consistently matched schemes:

- FONLL-B (Forte, Napoletano, Ubiali)
 - arXiv:1508.01529, arXiv:1607.00389
- NLO+NNLLpart+ybyt (Bonvini, Papanastasiou, Tackmann)
 - arXiv:1508.03288, arXiv:1605.01733

Higgs p_T reweighting

- Higgs pT distribution requires resummation - currently define separate scales µ for different contributions:
 - Implemented in POWHEG [JHEP 1202:088,2012, JHEP 01 (2016) 056], aMCSusHi [JHEP07(2014)079, arXiv: 1504.06625], MoRe-Sushi [JHEP11(2014)116]

- In the MSSM the relative strength of the top and bottom Yukawa couplings affects the p_T^H distribution
- CMS has published results showing the "model independent" gluon-fusion limits are sensitive to the relative topbottom contributions
 - Changes the acceptance for $m_\phi < 130~GeV$

Higgs p_T reweighting

 Effort to provide tool for determining distribution for arbitrary mA, tanβ: several ingredients needed to construct the total spectrum:

$$p_T$$
 distributions to reweight MC (given some reference, e.g PY8

$$\begin{pmatrix} Y_{t,\text{MSSM}} \\ \overline{Y_{t,2\text{HDM}}} \end{pmatrix}^2 \sigma_{2\text{HDM}}^t(Q_t) + \begin{pmatrix} Y_{b,\text{MSSM}} \\ \overline{Y_{b,2\text{HDM}}} \end{pmatrix}^2 \sigma_{2\text{HDM}}^b(Q_b) + \begin{pmatrix} Y_{t,\text{MSSM}} \\ \overline{Y_{t,2\text{HDM}}} \\ \overline{Y_{b,2\text{HDM}}} \end{pmatrix} \sigma_{2\text{HDM}}^{\text{int}}(Q_{tb})$$
Cross sections in 2HDM at reference tanß values
$$Yukawa \text{ couplings for: 2HDM at reference values + MSSM vs m_A, tan}$$

- All Higgs p_T distributions will be packaged within a RooFit workspace inside a ROOT file
 - Advantages: no additional code or interface needed, format widely used within CMS and ATLAS
 - Simply set parameters and look-up desired values:

```
auto w = (RooWorkspace*)file->Get("workspace");
w->var("mA")->setVal(1000.);
w->var("tanb")->setVal(30.);
double xs = w->function("ggA_t_MSSM_xsec")->getVal();
```


