Working Group 3: $\mathcal{N}MSSM \mathcal{S}ubgroup$

Milada Margarete Mühlleitner (KIT)

Conveners ATLAS: Nikolaos Rompotis CMS: Abideh Jafari Theorie: Ulrich Ellwanger, M. Mühlleitner, tba

> LHCHXSWG Meeting CERN, 15-17 Oct 2019

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

♦ Benchmark points for Higgs pair production

♦ Benchmark planes

♦ Electroweak corrections to NMSSM Higgs boson decays

$\mathcal{B}enchmark \ \mathcal{P}oints \ for \ \mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction$

Based on ommon work by Philipp Basler, Ulrich Ellwanger, Margarete Mühlleitner

• Higgs sector of the CP-conserving NMSSM:

- * 3 neutral scalars H_i : the SM Higgs H_{SM} , an MSSM-like scalar H_{MSSM} , a mostly SU(2) singlet-like scalar H_S
- * 2 neutral pseudoscalars A_j : an MSSM-like pseudoscalar A_{MSSM} , a mostly SU(2) singlet-like pseudoscalar A_S

• Trilinear Higgs couplings:

The (dimensionful) trilinear couplings $H_{\text{MSSM}} - H_S - H_{\text{SM}}$ and $A_{\text{MSSM}} - A_S - H_{\text{SM}}$ can be particularly large (since not suppressed by the SU(2) symmetry)

• Branching ratios:

BRs for $H_{MSSM} \rightarrow H_S + H_{SM}$ and $A_{MSSM} \rightarrow A_S + H_{SM}$ can be dominant

(which would suppress the BRs into $\tau\tau$, used for standard searches of H_{MSSM} and A_{MSSM})

$\mathcal{B}enchmark \ \mathcal{P}oints \ for \ \mathcal{H}iggs \ \mathcal{P}air \ \mathcal{P}roduction$

• MSSM-like exclusion limits: in the $M_A - \tan \beta$ plane do not hold in the NMSSM

• Searches

 $ggF \rightarrow H_{\text{MSSM}}/A_{\text{MSSM}} \rightarrow H_S/A_S + H_{\text{SM}} \rightarrow xxxx$ with $xxxx = bbbb, bb\gamma\gamma, bb\tau\tau$

(possibly) more can be promising

How large can these cross sections be within the viable parameter space of the NMSSM? Benchmark points/planes are needed!

• Search for maximal cross sections using NMSSMCALC/NMSSMTools imposing constraints from HiggsBounds/HiggsSignals, DM relic density/direct detection experiments, *B*-physics

Production cross sections for H_{MSSM}/A_{MSSM} decrease with their mass. BRs for the subsequent decays depend little on the mass of H_S/A_S .

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

\mathcal{P} rocess $ggF ightarrow H_{\mathsf{MSSM}} ightarrow H_S + H_{\mathsf{SM}} ightarrow bbbb, \, bb au au, \, au au bb$

Possible cross sections for bbbb in the NMSSM as function of the mass of $H_3\equiv H_{\rm MSSM}$ for $M_{H_S}\sim 100-110~{\rm GeV}$

The largest possible cross sections for bbbb, $bb\tau\tau$, $\tau\tau bb$ are achieved for the same benchmark points as the branching ratios of H_{SM} , H_S into bb and $\tau\tau$ are always proportional to each other (~ 1 : 1/10).

$\mathcal{P} ext{rocess} ~ggF ightarrow A_{ ext{MSSM}} ightarrow A_S + H_{ ext{SM}} ightarrow \gamma \gamma bb$

(Nearly) pure singlet-like pseudoscalar A_S has tiny tree-level couplings to SM particles but possibly a large coupling λ to charged higgsinos

 \rightarrow Higgsino-loop induced coupling of A_S to $\gamma\gamma$ can be dominant, imply BR($A_S \rightarrow \gamma\gamma$) up to $\sim 90\%$

 \rightarrow Astonishingly large (possible) cross section into $\gamma\gamma + bb$

Here $M_{A_S} \sim 147 - 180$ GeV; somewhat smaller possible cross sections for the full possible range $M_{A_S} \sim 1$ GeV - ($M_{A_{MSSM}} - 125$ GeV)

$\mathcal{G}eneral\ \mathcal{R}emarks$

- * The considered final states are the same as considered in searches for (resonant) Higgs pair production.
- * However, these searches would miss the present scenarios if the singlet-like scalar/pseudoscalar masses differ considerably from 125 GeV.
- * Here the signal depends on two unknown masses, the searches are slightly more involved compared to resonant SM Higgs pair production; proposals for searches involving sliding windows have been made in [U. Ellwanger, M. Rodriguez-Vazquez, 1707.08522].
- * Similar processes would also be possible in non-SUSY extensions of the Higgs sector involving two Higgs doublets plus a singlet.

- MSSM Higgs sector: at tree level described by M_A , $\tan\beta$
- NMSSM Higgs sector: at tree level described by (CP-conserving)

 $t_{h_u}, t_{h_d}, t_{h_s}, e, M_W^2, M_Z^2, \tan\beta, M_{H^{\pm}}^2/A_{\lambda}, \lambda, \kappa, v_s, A_{\kappa}$

- complex relations between input parameters and masses/mixing angles diagonalizing mass matrices (
 enter the couplings)
- How to get meaningful benchmark planes?: not much progress; possible approaches
 - scan parameter space to get all possible results for given observable and plot its minimum/maximum values for one varying parameter
 - * identify input parameters with largest impact on a given observable (not obvious)
 - * restriction to NMSSM subspace where simple relations among masses/mixing angles and parameters hold or reduction of parameter space through reasonable assumptions
 - ▷ 'Natural NMSSM' [King eal '14]
 - \triangleright GUT constraints; decoupling limit $m_{H_3} \approx m_{A_2} \approx m_{H^{\pm}}$ [Beskidt,de Boer '19]
 - \triangleright Alignment of the H^{SM} [Baum, Shah, Freese '19] ...
 - * ... input welcome!

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

Hadron Collider Phenomenology:

direct production of new particles \rightarrow precision physics and indirect searches

- Precision in theory predicions of Higgs observables indispensable:
 - * SM-like behaviour of discovered Higgs ~>> small indirect new physics effects
 - * identification of underlying model \leftarrow different new physics models lead to similar effects

$\mathcal{T}he \ \mathcal{C}P\text{-}\mathcal{V}iolating \ \mathcal{N}MSSM \ \mathcal{H}iggs \ \mathcal{S}ector$

• Higgs Sector: 2 Higgs doublets and 1 complex singlet

$$H_d = \begin{pmatrix} \frac{1}{\sqrt{2}}(v_d + h_d + ia_d) \\ h_d^- \end{pmatrix} , \quad H_u = e^{i\varphi_u} \begin{pmatrix} h_u^+ \\ \frac{1}{\sqrt{2}}(v_u + h_u + ia_u) \end{pmatrix} , \quad S = \frac{e^{i\varphi_s}}{\sqrt{2}}(v_s + h_s + ia_s) .$$

• Higgs interaction states mix: Mass term

$$\mathcal{L}_{\text{neutral}}^{m} = \frac{1}{2} \phi^{T} M_{\phi\phi} \phi , \quad \phi = (h_d, h_u, h_s, a_d, a_u, a_s)$$

mass eigentstates $h_1, ..., h_5$ with $m_{h_1} \leq ... \leq m_{h_5}$

• Input parameters of the CP-violating Higgs sector:

 $m_{H_d}^2, m_{H_u}^2, m_S^2, M_W^2, M_Z^2, e, \tan\beta, v_s, \varphi_s, \varphi_u, |\lambda|, \varphi_\lambda, |\kappa|, \varphi_\kappa, \Re A_\lambda, \Im A_\lambda, \Re A_\kappa, \Im A_\kappa$

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

${\cal S} tatus of the {\it Mass} {\it Corrections}$

• CP-conserving NMSSM:

* Full one-loop corrections, including momentum dependence

[Ellwanger; Elliott eal; Pandita; Ellwanger, Hugonie; Degrassi, Slavich (\overline{DR}); Staub eal (\overline{DR}); Ender eal (mixed OS- \overline{DR}); Drechsel eal (mixed OS- \overline{DR})]

* Two-loop at $p^2 = 0$ at $\mathcal{O}(\alpha_t \alpha_s + \alpha_b \alpha_s)$ [Degrassi, Slavich] and beyond [Goodsell eal] (DR)

• CP-violating NMSSM:

- * Full one-loop corrections, including momentum dependence [Ham eal; Cheung eal; Graf eal; MMM eal; Domingo eal]
- * Two-loop at $p^2 = 0$ at $\mathcal{O}(\alpha_t \alpha_s + \alpha_t^2)$ [Nhung eal; Dao eal] for mixed OS- $\overline{\text{DR}}$ scheme and with OS or $\overline{\text{DR}}$ renormalization in the top/stop sector and automized ($\overline{\text{DR}}$) [Goodsell,Staub; Goodsell,Paßehr]

$\mathcal{C}odes \text{ for } \mathcal{N}MSSM \ \mathcal{H}iggs \ \mathcal{D}ecays$

• Decay Codes

- * NMSSMTools CP-conserving, recently CP-violating NMSSM [Ellwanger eal; Domingo] (includes dominant QCD corrections)
- * NMSSMCALC CP-conserving and CP-violating NMSSM [Baglio eal] (includes dominant QCD and Δ_b corrections)
- * generic one-loop corrected two-body decays in the DR (MS) scheme [Goodsell eal] implemented in SPHENO [Porod; Porod,Staub; Goodsell eal] and SARAH [Staub]
- * SloopS (not public) one-loop NMSSM Higgs decays [Bélanger eal]

• New Developments:

- * FeynHiggs group: Full one-loop decay widths of neutral Higgs bosons into SM particles including leading QCD corrections in the CP-violating NMSSM
 [Domingo,Heinemeyer,Paßehr,Weiglein '18; Domingo,Paßehr '19]
- * NMSSMCALCEW: Full (SUSY-)EW corrections to neutral Higgs bosons in the CP-violating NMSSM into SM and SUSY particle final states combined with existing (SUSY-)QCD corrections in NMSSMCALC [Baglio,Dao,MMM]

• Features:

[Domingo eal, Eur. Phys. J. C78 (2018) no. 11, 942]

- * external Higgs fields, mixing effects consistently taken into account [Domingo eal; Fuchs,Weiglein] self-energies include full one-loop and leading $\mathcal{O}(\alpha_t \alpha_s, \alpha_t^2)$ two-loop corrs. in MSSM approx.
- * fermionic decay channels supplemented by higher-order QCD corrections (also Δ_b corrections)
- * radiatively induced bosonic decay modes include higher-order QCD corrections
- * tree-level estimate of off-shell decay widths into WW/ZZ, full one-loop above threshold
- * discussion of remaining theoretical uncertainties

Comparison with FeynHiggs [Domingo eal]

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

• Features:

[Baglio, Dao, MMM, arXiv:1907.12060]

- * external Higgs fields, mixing effects consistently taken into account [Domingo eal; Fuchs,Weiglein] self-energies include full one-loop and $O(\alpha_t \alpha_s + \alpha_t^2)$ two-loop corrections [Ender eal; Graf eal; Nhung eal; Dao eal]
- Complete NLO (SUSY-)electroweak corrections to neutral Higgs decays of the CP-violating NMSSM into on-shell SM final states, gauge plus Higgs boson, Higgs pairs, chargino and neutralino pairs, squarks
- * Combined with (SUSY-)QCD corrections where applicable, Δ_b corrections taken into account
- * radiatively induced bosonic decay modes include higher-order QCD corrections
- $\ast\,$ one-loop corrections to the chargino, neutralino, stop and sbottom masses for different renormalization schemes: OS and $\overline{\text{DR}}$
- **Program Code:** available at

 $https://www.itp.kit.edu/{\sim}maggie/NMSSMCALCEW/$

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

NMSSMCALCEW [Baglio, Dao, MMM]

Points from scan in the NMSSM parameter space, check for compatibility with Higgs data [HiggsBounds,HiggsSignals]; Δ_{BR} quantifies relative difference between NMSSMCALC and NMSSMCALCEW; δ quantifies relative vertex corrections

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

Points from scan in the NMSSM parameter space, check for compatibility with Higgs data [HiggsBounds,HiggsSignals]; H_1 SM-like, $H_2 \equiv H_{h_s}$

M.M.Mühlleitner, 15 October 2019, CERN LHCHXSWG

$\mathcal{T}hank \ \mathcal{Y}ou \ \mathcal{F}or \ \mathcal{Y}our \ \mathcal{A}ttention!$

