Recommendations for the presentation of auxiliary information in BSM Higgs searches

Sven Heinemeyer (IFT/IFCA - CSIC) ⊕ Tim Stefaniak (DESY)
(for the HiggsBounds/HiggsSignals team:
Philip Bechtle, Tobias Klingl, Georg Weiglein, Jonas Wittbrodt)

Higgs Boson (ATLAS Preliminary data)

16th Workshop of the LHCHXSWG CERN, Geneva, 17 October 2019

- 1. Introduction
- 2. Exclusion limits from BSM Higgs searches
- 3. Measurements of the Higgs boson signal
- 4. Summary

Introduction

Specific model interpretations (BSM Higgs benchmark scenarios, κ fits, etc.) by ATLAS and CMS are nice and have their purpose, but:

The main experimental result is the model-independent limit or measurement of the signal cross section.

- Remaining model-dependence should be transparent and unfoldable.
- Uncertainty correlations with other limits or measurements should be *accessible*.

If this is ensured:

\Rightarrow Experimental results can be accurately reinterpreted in any BSM model.

⇒ The theory community can then make maximal use of the LHC results!
Theory tools: HiggsBounds+HiggsSignals, Lilith, HEPfit, ...

Team: P. Bechtle, SH, T. Klingl, T. Stefaniak, G. Weiglein, J. Wittbrodt

HiggsBounds

Confronts BSM Higgs sectors with exclusion limits from LEP, Tevatron and LHC Higgs searches.

HiggsSignals

Confronts BSM Higgs sectors with LHC Higgs signal rate and mass measurements.

 \Rightarrow excluded/allowed at 95% C.L. $(\chi^2_{\tau\tau} \dots) \Rightarrow \chi^2$ (sep. for rates and mass)

Codes available at GitLab & hepforge.

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019 — 4

Team: P. Bechtle, SH, T. Klingl, T. Stefaniak, G. Weiglein, J. Wittbrodt

HiggsBounds

HiggsSignals

Confronts BSM Higgs sectors with

Confronts BSM Higgs sectors

4

Main purpose and aim of these tools:

- Quick and convenient model testing tools for theorists;
- framework with minimal model-assumptions
 - \Rightarrow applicable to many BSM Higgs models;

• accurate implementation (incl. correlations, etc.) of public results;

Codes available at GitLab & hepforge.

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019

Limits from BSM Higgs searches

A general remark

Limits (*observed* and *expected*) should be presented as *function of all* (*N*) *relevant parameters*: M_{ϕ_i} , σ 's of involved production modes, Γ_{tot} , ...

If N too large to handle: Make further assumptions, but try to make sure these can be undone in a reinterpretation (as well as possible).

Example: Search for an additional SM-like Higgs boson decaying to $\gamma\gamma$.

Parameters: M_{ϕ} , Γ_{tot} , $\sigma_{pp \to \phi}$, $\sigma_{pp \to \phi qq}$, $\sigma_{pp \to W\phi}$, $\sigma_{pp \to Z\phi}$, $\sigma_{pp \to t\bar{t}\phi}$ Usual assumption: $\sigma_i = \mu \cdot \sigma_i^{SM}$ (common signal strength modifier μ)

 \Rightarrow Limit is set on μ (or $\sigma_{tot} = \sum_i \sigma_i$), as a function of M_{ϕ} and Γ_{tot}/M_{ϕ} .

 \Rightarrow Proper reinterpretation requires *signal efficiency/acceptance* for all production modes as function of M_{ϕ} .

A general remark

Limits (*observed* and *expected*) should be presented as *function of all* (*N*) *relevant parameters*: M_{ϕ_i} , σ 's of involved production modes, Γ_{tot} , ...

If N too large to handle: Make further assumptions, but try to make sure these can be undone in a reinterpretation (as well as possible).

5

Exclusion likelihood of BSM Higgs to $\tau^+\tau^-$ searches

- ATLAS and CMS published $-2\ln{\cal L}$ values for 13 ${\rm TeV},$ 36 $~{\rm fb}^{-1}$ results (CMS also for 8 ${\rm TeV}),$
- Narrow resonance (ϕ) toy model in three-dimensions: $(m_{\phi}, \sigma_{gg\phi}, \sigma_{bb\phi})$.

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019

Reproduction of exclusion likelihood for arbitrary models

- Likelihood information very useful for global BSM parameter fits,
- implemented in HiggsBounds with simple algorithm.

[Bechtle, SH, Stål, Stefaniak, Weiglein, 1507.06706]

Validation results in m_h^{mod+} scenario:

 \Rightarrow Very good reproduction of official 95% C.L. exclusion contour. S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019

Likelihoods from other BSM Higgs searches?

So far, BSM $\phi \rightarrow \tau^+ \tau^-$ searches and $h_{125} \rightarrow$ inv. have published likelihoods.

Which search channel's likelihood is the most wanted?

Likelihoods from other BSM Higgs searches?

So far, BSM $\phi \to \tau^+ \tau^-$ searches and $h_{125} \to \text{inv.}$ have published likelihoods.

Which search channel's likelihood is the most wanted?

 \Rightarrow The answer is model-dependent.

Likelihoods from other BSM Higgs searches?

So far, BSM $\phi \rightarrow \tau^+ \tau^-$ searches and $h_{125} \rightarrow \text{inv.}$ have published likelihoods.

Which search channel's likelihood is the most wanted?

 \Rightarrow The answer is model-dependent.

Channel	relevant parameters	BSM model
рр $ ightarrow bar{b}\phi$, $\phi ightarrow bar{b}$	$M_{\phi},~\sigma(pp ightarrow \phi),~\sigma(pp ightarrow bar{b}\phi)$	MSSM, 2HDM
$pp ightarrow \phi ightarrow tar{t}$	M_{ϕ} , $g_{Ht\bar{t}}$, $g_{At\bar{t}}$, Γ_{tot}	MSSM, 2HDM
$\it pp ightarrow \phi ightarrow ZZ, W^+W^-$	M_{ϕ} , $\mu_{pp ightarrow \phi}$, $\mu_{{ m VBF},V\phi}$, ($\Gamma_{ m tot}$)	singlet extensions
$pp ightarrow \phi ightarrow h_{125} h_{125}$	M_{ϕ} , $\sigma(pp ightarrow \phi ightarrow h_{125}h_{125})$, ($\Gamma_{ m tot}$)	singlet extensions
$pp ightarrow \phi_2 ightarrow Z \phi_1$	M_{ϕ_1} , M_{ϕ_2} , $\sigma(pp o \phi_2 o Z \phi_1)$	2HDM
${\it pp} ightarrow tb \phi^{\pm}$, $\phi^{\pm} ightarrow tb$	M_{ϕ^\pm} , $\sigma(pp o tb\phi^\pm o tbtb)$	MSSM, 2HDM

Some good candidates (theory-biased!):

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019 — 8

Higgs signal measurements

Experiments should (continue to) provide:

• measurements as signal strength (μ), STXS and fiducial XS

 \rightarrow allows for useful cross checks.

- signal efficiencies (or signal composition) of relevant Higgs subprocesses for *each* measurement [assuming a SM Higgs boson],
- reference value of SM Higgs prediction for each measurement,
- correlation-matrices (ideally: separately for exp. and theo.),
- allow for *negative values* of the measured cross section.

 \rightarrow "unbiased estimator".

 provide measurements for fixed Higgs mass (possibly various(?), but not only M_H-profiled!).

Data should be provided in digitized form with sufficient accuracy.

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019 9

TH uncertainty included?!

darker: HiggsSignals, lighter: ATLAS

[ATLAS, 1909.02845]

Without SM theory uncertainties (THU).

[ATLAS, 1909.02845]

SM THU only added on diagonal elements (uncorrelated).

S. Heinemeyer/T. Stefaniak (CSIC/DESY) — Presentation of BSM Higgs search results — 17 October 2019 10

SM THU added using correlations of inclusive XS (not binned).

[ATLAS, 1909.02845]

SM THU added using correlations of STXS ggF bins (next slide).

Example: Validation tests with latest ATLAS combination

https://indico.cern.ch/event/618048/, see WG1 meeting follow-up (pdf).

Example: Validation tests with latest ATLAS combination

https://indico.cern.ch/event/618048/, see WG1 meeting follow-up (pdf).

Example: Validation tests with latest ATLAS combination

by ATLAS+CMS+theory) is highly desirable!

- Correlation information must be retained after bin merging,
- Needed for all production modes (not only ggF).

Until we have this "official" matrix, experiments could release the correlation matrix used in their analysis.

https://indico.cern.ch/event/618048/, see WG1 meeting follow-up (pdf).

Experimentalists put an enormous amount of work into their analyses.

- \Rightarrow Make sure impact and legacy of experimental results is maximal!
- \Rightarrow Limits and measurements must be *re-interpretable* for theorists.
 - *Limits as function of all relevant parameters*; with assumptions on signal composition, reinterpretation requires signal efficiencies.
 - $\bullet\,$ ideally, exclusion likelihoods in addition to of hard 95% C.L. limits.
 - ... and of course for expected and observed.
 - 125 GeV Higgs measurements: different formats (μ , STXS, σ_{fid}), signal efficiencies and correlations are crucial for accurate implementation.

Experimentalists put an enormous amount of work into their analyses.

- \Rightarrow Make sure impact and legacy of experimental results is maximal!
- \Rightarrow Limits and measurements must be *re-interpretable* for theorists.
 - *Limits as function of all relevant parameters*; with assumptions on signal composition, reinterpretation requires signal efficiencies.
 - $\bullet\,$ ideally, exclusion likelihoods in addition to of hard 95% C.L. limits.
 - ... and of course for expected and observed.
 - 125 GeV Higgs measurements: different formats (μ , STXS, σ_{fid}), signal efficiencies and correlations are crucial for accurate implementation.

Thanks for your attention!