Dark Matter Working Group@Higgs

P.Harris(MIT-CMS),O. Brandt(Cambridge-ATLAS), C. Ohm (KTH-ATLAS)→F. Ungaro(Melbourne-ATLAS), ,T.Tait(UCI-Theory),U. Haisch(MPI-MPP-Theory) X. Cid(USC-LHCb),

F.Ungaro is replacing C. Ohm

Dark Matter Working Group

- Our role @LHC is to ensure consistent DM models
 - This allows for the interpretation of DM in global scope
 - Comparisons to Direct/Indirect detection
 - Comparisons across collaborations

Note the 90% CL (this is what DD uses)

In Higgs land: Where is DM?

- DMWG overlaps with Higgs XS WG in two ways
 - Higgs to invisible
 - 2HDM interpretations (focusing on mono-higgs)
- Where do we currently stand?

Excluding H(inv) < 0.25 (on both experiments)

Other Related Results?

- Both ATLAS/CMS have 2HDM+Z' interpretations
 - Aiming additionally to have 2HDM+A (next slide)

In process of updating coupling choices

What are plans?

Aiming to present more results with 2HDM+a

Particle content:

- CP even: h, H
- CP odd: A, a
- Charged: H[±]
- Dirac DM: χ

A, a mixed: $\sin \theta$

 a_0 (before mixing) couples to χ

2HDM+a is a complete/complicated model

Full ground work for (pseudo)scalar simplified models Two new final states : resonant (mono-H and mono-Z)

Current Results with 2HDM+a

Will be a focus of mono-H in ATLAS/CMS

Other Results

Generic Scalar/Pseudoscalar below 200/350

Pertinent Updates from LHCDMWG

- Investigating the use of NLO for scalar models
 - Mostly pertains to tt+DM
 - Very difficult to do NLO for monojet/t+DM
 - Likely we will agree on NLO k-factors
 - Unlikely that we will change baseline interpretation

- Update of couplings from 2HDM+Z'
 - Current benchmarks largely excluded
 - Need smaller couplings given large exclusion
 - Plan to reduce overall cross section

Additional DMWG activities

Working towards a t-channel white paper

Dark matter, can be Dirac or Majorana Important differences in the signal.

Aiming to write a t-channel white paper over winter time

Non-DMWG Overlaps

- Singlet Mixing model
 - Adds a second scalar that mixes with the Higgs boson

$$\mathcal{L} \supset -y_{\mathrm{DM}} s \bar{\chi} \chi - \mu s |H|^2$$

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

Has been probed generically by both ATLAS and CMS

Non-DMWG Dark Higgs

- Given the rise of dark photon models
 - Need a way to give the dark photon mass
 - Can come from dark Higgs or standard Higgs

Dark photon has typically not been part of DMWG

Dark matter often assumed offshell (not directly connected)

Missing Models

- Other models have not been explored
 - Typically there has been a good reason
 - Sometimes we have run out of time or forgot
- One model that could be added
 - Fermiophobic dark matter
 - This model needs very small couplings (hard to find)

$${\cal L}_{
m S,VV} \supset \, -2 c_{S,VV} S \left(rac{M_W^2}{v} W^{+\mu} W_\mu^- + rac{M_Z^2}{2 v} Z^\mu Z_\mu
ight) \, - \, rac{1}{2} m_{
m MED}^2 S^2 + {\cal L}(S,ar\chi,\chi) \, .$$

Conclusions

- LHC DM WG covers (psuedo)scalar models
 - These overlap with Higgs through 2HDM models
 - Higgs to invisible ostensibly a subset of this

- Currently no big issues in LHC DM WG
 - Recent work has been towards a t-channel paper
 - Small updates are happening on other aspects

Looking forward to run II results on the full dataset

Feel free to ask me about other stuff

Backup