A status report of DiHiggs MC generators in ATLAS and CMS LHCHXSWG workshop, Oct 2019

Xiaohu SUN On behalf of the ATLAS and CMS collaborations 2019-10-17

The University of Manchester

- This talk reviews the status of DiHiggs (HH) MC generators used in both experiments
- **Discuss commonalities** and differences
- Spot uncovered corners
- Harmonise generators
 - Consistent comparisons of future results
 - Smoother (potential) combination effort of ATLAS+CMS HH

Introduction ATI AS

Non-resonant (ggF)

Non-resonant (VBF)

Resonant spin X→HH (ggF)

Resonant spin X→HH (VBF)

Resonant spin X→HH (ggF) Resonant spin X→HH (VBF)

 $X \rightarrow SH/SS$

-	NLO+FT Powheg-Box-V2 (vary κ _λ)		
	Herwig7	Pythia8	
•	LO MG5_aMC@NLO (vary $\kappa_{V} \kappa_{2V}$ and κ_{λ})		
	Herwig7	Pythia8	
0	LO MG5_aMC@NLO Heavy scalar, narrow width	LO MG5_aMC@N Radion, narrow wi	
	Herwig7	Pythia8	
0	NLO Powheg-Box-V2 Heavy Higgs, narrow width	LO MG5_aMC@N Radion, narrow wi	
	Pythia8	Pythia8	
2	LO MG5_aMC@NLO, graviton, narrow width		
	Pythia8		
2	_	LO MG5_aMC@N graviton, narrow w	
	_	Pythia8	
	LO Pythia8 (ms>mн)	NLO MG5_aMC@N generalized NMSS	
	Pythia8	Pythia8	

University of Manchester

Recap the last versions (ME)

Last versions (36/fb ea

Non-resonant (ggF)

Non-resonant (VBF) Resonant spin0 X→HH (ggF) Resonant spin0 X→HH (VBF) Resonant spin2 $X \rightarrow HH (ggF)$ Resonant spin2 X→HH (VBF)

NLO+FTApprox MG5_aM MG5_aMC@NLO for κ_{λ} vari LO MG5 aMC@NLO with

NLO MG5_aMC@NLO

LO MG5_aMC@NLC

LHCHXSWG workshop, Oct 2019

arly Run2)	Now (140/fb full Run2)	
IC@NLO, LO iation (ATLAS) h EFT (CMS)	NLO+FT Powheg-Box-V2 (vary κ_{λ}) EFT unchanged, under discussion	
	LO MG5_aMC@NLO (vary $\kappa_V \kappa_{2V}$ and	
) (ATLAS)	LO MG5_aMC@NLO	
D (CMS)		
	NLO Powheg-Box-V2 (ATLAS) LO MG5_aMC@NLO (CMS)	

LO MG5_aMC@NLO

LO MG5_aMC@NLO

LO Pythia8 (ATLAS) NLO MG5_aMC@NLO (CMS)

LHCHXSWG workshop, Oct 2019 Non-resonant ggF HH event **ATLAS** Generator-level 0.07 √s= 13 TeV **NLO Powheg-Box-V2** 0.06 0.005 MG LO — FT κ_λ=1 0.05 - FTApprox κ_{λ} =1 0.004 0.04 0.003 0.03 0.02 0.002 0.001 pT of leading H 0.8 0.6 300 400 500 600 700 800 m(HH) [GeV]

- The update for full Run2 analyses is NLO FTapprox 2 0.006 \rightarrow FT, i.e. implementation of finite top mass in the virtual loop
 - Validation done in both ATLAS and CMS
- The implementation is available in Powheg and MG5_aMC@NLO (1604.06447, 1803.02463) 🖉
 - Use Powheg as baseline
- The difference of FT vs FTApprox is found consistent with theory prediction (1604.06447)

m(HH) at fixed-order NLO

pT of the leading Higgs, after shower

Non-resonant ggF HH with non-SM κ_{λ}

- as last page allows this: validation done in both ATLAS and CMS
- Compare MG5 LO and Powheg NLO+FT with λ variations, at fixed-order NLO

• The update for full Run2 analyses is λ -variation at LO \rightarrow NLO+FT, same generator

Linear combination for κ_{λ} variations

Both ATLAS and CMS use similar methods to linearly combined (LC) MC samples with fixed κ_{λ} , κ_t to make MC samples with arbitrary κ_{λ} , κ_{t}

$$\sigma(pp \to HH) \sim k_t^4 \left[|B|^2 + \frac{k_\lambda}{k_t} (B^*T + TB^*) + \left(\frac{k_\lambda}{k_t}\right)^2 |T|^2 \right]$$

- The base samples for LC are free to choose
 - Previously (36/fb) used: $(\kappa_t, \kappa_\lambda) = (1,0), (1,1), (1,20)$ [(1,2) for κ_λ~2]
 - Testing (1,0), (1,1), (1,5), (1,20) ...
 - Good to harmonise

- κ_{λ} values

Non-resonant ggF HH with shower

- ATLAS:
 - Herwig7 (H7-UE-MMHT) is used as the baseline
 - Pythia8 (A14 NNPDF23LO) is used as an alternative to evaluate the systematic uncertainties
- CMS:
 - Pythia8 is used as the baseline
 - Vary hadronisation parameters in Pythia8 for uncertainties

- The single Higgs production with heavy-flavour (HF) radiation (H+1b, H+2b etc.) is among our backgrounds, as many of us require one of Higgs $H \rightarrow bb$
- Currently ATLAS treatment on the HF single Higgs is (for example bbyy that has single Higgs backgrounds just under the $\gamma\gamma$ -125 peak):
 - Assign 100% uncertainty to ggF, VBF and WH single Higgs, based on studies of HF quarks associated with tt [1304.6386] and W [1302.2929]
 - No uncertainty on ZH and ttH single Higgs, as the dominant heavy-flavour production is considered at LO
- ggF [1509.05843] and bbH can be generated in Powheg separately
 - Need to deal with the overlap between ggF (H+bjets) and bbH

Background: HF single Higgs

- production
- Particularly interesting,
- given the VBF jets

- ggF HHjj has the same final state as VBF HHjj
 - is not large, but to VBF, it is large
- The cross-section of ggF HHjj is >~ 2x of VBF HHjj, and can be <u>1/3 of VBF HHjj yields after</u> VBF selections (1506.08008): m(HH) > 400 GeV, $\Delta \eta$ (j1,j2) > 5
- Current estimate uses
 - ggF HH NLO HH+j (ME) + j (PS)
- Available generator from theorists:
 - Sherpa+OpenLoops, expensive to run, need to test it

LHCHXSWG workshop, Oct 2019

ATLAS-CONF-2019-030

- $X \rightarrow SH/HH$ is of great interests
- Higher mass of S enhances $S \rightarrow WW$ branching ratio
- ATLAS Pythia8: use BSM process $A \rightarrow Hh$ (where H is heavier and h is 125) to realise X→SH
- CMS MG5_aMC@NLO: use a generalisation of the NMSSM model for $H \rightarrow aa$ to account for the presence of another scalar X→SH

LHCHXSWG workshop, Oct 2019

SH/SS

Higher mass of S and X tend to have merged final states where boosted techniques can be applied

- Status:
 - LO implementation of HH in place, as CMS published setting limits on benchmarks
 - Machinery of reweighting at ME level available at LO (1710.08261)
- Open for discussions:
 - SMEFT or HEFT
 - Which EFT couplings are interesting or feasible
 - Will the benchmark point tests or a N-dimensional coupling scan be performed
 - If going with the benchmark point tests, will benchmark needs updating
 - What can be constrained if use both HH and H

EFT HH

Summary

• A wide range of HH programs are ongoing, benefitting from the availability of a big variety of MC generators on the market (many thanks to our theorists!)

- In general, ATLAS and CMS are consistent in ME generator choices
 - Some aspects left to harmonise: κ_{λ} base samples, EFT treatment etc.

- Beyond the limit with the current dataset, many unexplored areas are on the way Smaller production modes: ttHH VHH etc.

 - Constrains on Higgs self-coupling and EFT from all of the production modes
- * According to ATLAS rules all the Generator-level plots are published through the collaboration approval [cds.cern.ch]

Backup

