The long pending open question: How shall we make general measurements of Higgs decay properties

Nicolas Berger, Michael Duehrssen

0st edition: informal discussion, Les Houches 2017

1st edition: STXS/fiducial meeting, 17th May 2018

2nd edition: Les Houches, 12th June 2019

3rd edition: LHC Higgs XS WG workshop, 17th October 2019

Long history of approaches

- This is not a complete list, just some examples of what was used in experimental measurements
 - Effective Lagrangian, Higgs Characterization model, f_{ai}, EFTs, Pseudo-Observables, ..., fiducial differential
- Still missing: something we can all agree upon to use for general Higgs decay measurements
 - Needs to be sufficiently general
 - Suitable to do measurements, e.g. should be closely related to observable quantities
 - If possible, assumptions needed for interpretations should be avoided for the measurements

Some general statements

- The Higgs is a scalar: no information is transferred between production and decay!
 - Anything learned about Higgs decays in one Higgs production mode or production kinematics is generally valid for all Higgs
 - If we want to measure n STXS bins in production and m parameters for decay, we need to measure in total n+m parameters, not n*m
 - => Measuring production and decay is feasible!
- We are discussing on-shell Higgs decays
 - q²=(125 GeV)², independent of kinematics
 - An expansion can be done and should converge
- Non-trivial information only in H \rightarrow 4l, H \rightarrow lvlv, H \rightarrow $\tau\tau_3$

Let's try a wish list

Since none of the proposals so far got wide acceptance, let's try to make a wish list and discuss it. From this it might be easier to converge.

- The parameters should be as sensitive as possible, e.g. not average over large phase space volumes that could provide extra sensitivity
- The parameters should have some intuitive meaning. For example, something directly related to the partial decay width
 - Imagine reading and <u>understanding</u>: "We measure the CP-even part of H→ττ as 230±30 keV and the CP-odd part is <50 keV @ 95% CL. The SM prediction (CP-even) is 256±5 keV"
- As general as needed with as few parameters as possible
- We know there is interference in decays. Whatever is chosen should make dealing with interference not too complicated
- Can be well measured together with production STXS bins
- More?

Some more inspiration to get you thinking

Trivial: measure in bins (STXS)?

Linear (parameters are \sim partial width $\Gamma_{_{j}}$ like)

- Bin the decay phase space into a suitable number of bins to extract all information
- Pro: Intuitively understandable, well defined
- Pro: Interference enters in the interpretation step
- Con: Likely need a large numbers of bins in order to simultaneously extract the information about ~5 decay observables with good sensitivity (for h→4l)

 TO BE CHECKED

 → Les Houches project

Continues: Linear or Quadractic?

Reminder: the observable rate for a Higgs signal is

$$\sigma_i^*\Gamma_j/\Gamma_H$$

Extract decay information with continuous parameters

- (a) with the decay rate depending linearly on the parameters, e.g. $\Gamma_{\rm i}({\rm CP}\text{-}{\rm odd})$
- (b) with the decay rate depending quadratically on the parameters, e.g. $\Gamma_{\rm j}$ =poly2($\kappa_{\rm m}$) as in the κ -framework

 In both cases, interference effects between parameters need to be treated correctly

Most general proposal so far: POs

	(b) PO	(a) Physical PO	Relation to the eff. coupl.
	$\kappa_f,~\delta_f^{ ext{CP}}$	$\Gamma(h o f ar{f})$	$= \Gamma(h \to f\bar{f})^{(SM)}[(\kappa_f)^2 + (\delta_f^{CP})^2]$
	$\kappa_{\gamma\gamma},\;\delta_{\gamma\gamma}^{ ext{CP}}$	$\Gamma(h o \gamma \gamma)$	$= \Gamma(h \to \gamma \gamma)^{(SM)} [(\kappa_{\gamma \gamma})^2 + (\delta_{\gamma \gamma}^{CP})^2]$
	$\kappa_{Z\gamma},~\delta_{Z\gamma}^{ ext{CP}}$	$\Gamma(h \to Z\gamma)$	$= \Gamma(h \to Z\gamma)^{(SM)} [(\kappa_{Z\gamma})^2 + (\delta_{Z\gamma}^{CP})^2]$
	κ_{ZZ}	$\Gamma(h \to Z_L Z_L)$	$= (0.209 \text{ MeV}) \times \kappa_{ZZ} ^2$
	ϵ_{ZZ}	$\Gamma(h \to Z_T Z_T)$	$= (1.9 \times 10^{-2} \text{ MeV}) \times \epsilon_{ZZ} ^2$
	$\epsilon_{ZZ}^{ ext{CP}}$	$\Gamma^{\mathrm{CPV}}(h \to Z_T Z_T)$	$= (8.0 \times 10^{-3} \text{ MeV}) \times \epsilon_{ZZ}^{\text{CP}} ^2$
	ϵ_{Zf}	$\Gamma(h o Z f \bar{f})$	$= (3.7 \times 10^{-2} \text{ MeV}) \times N_c^f \epsilon_{Zf} ^2$
	κ_{WW}	$\Gamma(h \to W_L W_L)$	$= (0.84 \text{ MeV}) \times \kappa_{WW} ^2$
	ϵ_{WW}	$\Gamma(h \to W_T W_T)$	$= (0.16 \text{ MeV}) \times \epsilon_{WW} ^2$
	$\epsilon_{WW}^{ ext{CP}}$	$\Gamma^{\mathrm{CPV}}(h \to W_T W_T)$	$= (6.8 \times 10^{-2} \text{ MeV}) \times \epsilon_{WW}^{\text{CP}} ^2$
	ϵ_{Wf}	$\Gamma(h \to W f \bar{f}')$	$= (0.14 \text{ MeV}) \times N_c^f \epsilon_{Wf} ^2$
•	κ_g	$\sigma(pp \to h)_{gg-\text{fusion}}$	$= \sigma(pp \to h)_{gg-fusion}^{SM} \kappa_g^2$
	κ_t	$\sigma(pp \to t\bar{t}h)_{ m Yukawa}$	$= \sigma(pp \to t\bar{t}h)_{\rm Yukawa}^{\rm SM} \kappa_t^2$
Table 110 in https://arxiv.	YR4: org/abs/1610. <u>07922</u>	$\Gamma_{\mathrm{tot}}(h)$	$= \Gamma_{\text{tot}}^{\text{SM}}(h)\kappa_H^2$

Most general proposal so far: POs

e.g. $h \rightarrow e^+e^- \mu^+\mu^ A = i \frac{2m_Z^2}{v_F} (\bar{e}\gamma_\alpha e) (\bar{\mu}\gamma_\beta \mu) \times$ $\left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \right.$ $\left. + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{SM,\text{eff}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{SM,\text{eff}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^\alpha q_1^\beta}{m_Z^2} + \right.$ $\left. + \left(\epsilon_{ZZ}^{CP} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \lambda_{Z\gamma}^{CP} \epsilon_{Z\gamma}^{SM,\text{eff}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \lambda_{\gamma\gamma}^{CP} \epsilon_{\gamma\gamma}^{SM,\text{eff}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right]$ $\left. + \left(\epsilon_{ZZ}^{CP} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \lambda_{Z\gamma}^{CP} \epsilon_{Z\gamma}^{SM,\text{eff}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \lambda_{\gamma\gamma}^{CP} \epsilon_{\gamma\gamma}^{SM,\text{eff}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right]$ $\left. + \left(\epsilon_{ZZ}^{CP} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \lambda_{Z\gamma}^{CP} \epsilon_{Z\gamma}^{SM,\text{eff}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \lambda_{\gamma\gamma}^{CP} \epsilon_{\gamma\gamma}^{SM,\text{eff}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right]$

		_ (1 / 1
PO	Physical PO	Relation to the eff. coupl.
$\kappa_f, \; \delta_f^{ ext{CP}}$	$\Gamma(h o f \bar{f})$	$= \ \Gamma(h \to f\bar{f})^{(\mathrm{SM})}[(\kappa_f)^2 + (\delta_f^{\mathrm{CP}})^2]$
$\kappa_{\gamma\gamma},\;\delta_{\gamma\gamma}^{ ext{CP}}$	$\Gamma(h o \gamma \gamma)$	$= \Gamma(h \to \gamma \gamma)^{(\mathrm{SM})} [(\kappa_{\gamma \gamma})^2 + (\delta_{\gamma \gamma}^{\mathrm{CP}})^2]$
$\kappa_{Z\gamma},\;\delta_{Z\gamma}^{ ext{CP}}$	$\Gamma(h \to Z\gamma)$	$= \Gamma(h \to Z\gamma)^{(SM)} [(\kappa_{Z\gamma})^2 + (\delta_{Z\gamma}^{CP})^2]$
κ_{ZZ}	$\Gamma(h o Z_L Z_L)$	$= (0.209 \text{ MeV}) \times \left \kappa_{ZZ} \right ^2$
ϵ_{ZZ}	$\Gamma(h o Z_T Z_T)$	$= (1.9 \times 10^{-2} \text{ MeV}) \times \epsilon_{ZZ} ^2$
$\epsilon_{ZZ}^{ ext{CP}}$	$\Gamma^{\mathrm{CPV}}(h \to Z_T Z_T)$	= $(8.0 \times 10^{-3} \text{ MeV}) \times \epsilon_{ZZ}^{\text{CP}} ^2$
ϵ_{Zf}	$\Gamma(h o Z f ar{f})$	$= (3.7 \times 10^{-2} \text{ MeV}) \times N_c^f \epsilon_{Zf} ^2$
κ_{WW}	$\Gamma(h \to W_L W_L)$	$= (0.84 \text{ MeV}) \times \kappa_{WW} ^2$
ϵ_{WW}	$\Gamma(h \to W_T W_T)$	$= (0.16 \text{ MeV}) \times \left \epsilon_{WW} \right ^2$
$\epsilon_{WW}^{ ext{CP}}$	$\Gamma^{\mathrm{CPV}}(h \to W_T W_T)$	$= (6.8 \times 10^{-2} \text{ MeV}) \times \epsilon_{WW}^{\text{CP}} ^2$
ϵ_{Wf}	$\Gamma(h \to W f \bar{f}')$	$= (0.14 \text{ MeV}) \times N_c^f \left \epsilon_{Wf} \right ^2$
κ_g	$\sigma(pp \to h)_{gg-\text{fusion}}$	$= \sigma(pp \to h)_{gg-\text{fusion}}^{\text{SM}} \kappa_g^2$
κ_t	$\sigma(pp \to t\bar{t}h)_{ m Yukawa}$	$= \sigma(pp \to t\bar{t}h)_{\rm Yukawa}^{\rm SM} \kappa_t^2$
κ_H	$\Gamma_{ m tot}(h)$	$=\Gamma_{\mathrm{tot}}^{\mathrm{SM}}(h)\kappa_{H}^{2}$

Table 110 in YR4:

https://arxiv.org/abs/1610.07922

Physical POs

Linear (parameters are \sim partial width $\Gamma_{_j}$ like)

- Pro: continuous parameter (so only ~5 for h→4l)
- Pro: closely related to the $\sigma^*B==$ event rate
- Mixed: Appears to be intuitively understandable (its like a partial width), but because of interference the partial width components in the same decay mode do not sum up to the observable partial width!
- Con: interference terms ~ ugly/difficult

POs

Quadratic (parameters are ~ kappa k_j like)

- Pro: more closely related to underlying theory
- Pro: interference terms natural and simple
- Con: value/meaning not necessarily intuitively or directly connected to observable quantities
 - Factors of 2, π , ... (any constant) can be put into the definition of the parameters without changing physics
 - Option to make this more intuitive:
 κ_i, ε_i, c_i, ...=1 could correspond to something well defined
- Possible Con: Covariance matrix of a joined measurement with STXS bins could be insufficient (TO BE CHECKED!), if κ^2 , ϵ^2 terms dominate

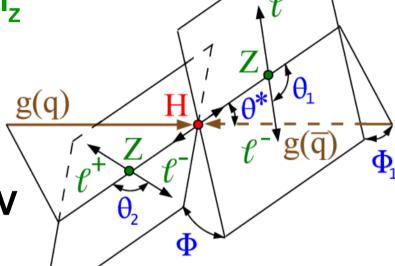
A compromise?

H→4I:

- 1st Z usually ~ on-shell, mass m₁₂ ~ m_z
- 2nd Z off-shell, mass q²=m₃₄
- STXS for q² dependence: make bins in m₃₄.
 Experiments usually cut m₃₄>~10 GeV
- Within each bin, q² is ~ constant
 - Can chose bins or continuous parameters without worry about q² expansion
 - Continuous parameters could be stage 2

$H \rightarrow I V I V$:

- Want to be as independent from production bins as possible
- Only one Lorentz invariant observable: $m_{\parallel} o Let's$ make bins₁₂



Even more minimal starting point

We have seen in the EFT discussions that acceptance effects in decays play a role. Treat it like $|Y_{\mu}|>2.5$ in production

- H→ZZ*
 - Add 3 H→ZZ* sub-bins
 - H→4I, m_{34} < X (X ~ 10 GeV, not measured region)
 - H→4I, X < m_{34} < 62.5 GeV
 - H→ZZ*→!4I (populated in ttH multilepton)
- H→WW*
 - Add 4 H→WW* sub-bins
 - H→IvIv, m_{||} < X1 (X1 ~ 10 GeV, not measured region)
 - H→ I_VI_V , X1 < m_{\parallel} < X2 (X2 ~ 50-60 GeV)
 - H→IνIν, X2 < m_{||}
 - H→WW*→!IvIv (populated in ttH multilepton, VHWW)

Production and decay binning

Imagine: O(30) production bins, O(10) decay bins. \Rightarrow 30 × 10 total bins?

Truth: Since H is a scalar, can use MC to extrapolate kinematics to each STXS bin without

⇒ Only need 30 + 10 truth bins to describe the process

Reco: several possibilities

- Measure binned decay distributions in reco STXS prod bins ⇒ need ~ 30 × 10 bins.
 Normalization → usual STXS measurement, shapes → decays
- Unfold decay distributions in each prod. bin back to Higgs rest frame, consider inclusively over prod. bins ⇒ 30 + 10 bins to consider
- Unbinned analysis in each reco STXS prod bin (e.g. MLM) ⇒ 30 unbinned models

In all cases seem to need ~30 × 10 templates (or their unbinned equivalent) from signal MC

• An analysis can chose to implement observables for the decay bins only on a small subset of the most sensitive STXS production bins, reducing the problem considerably.

What about ...

- fiducial/differential decay measurements?
 - Usually only 1-dimensional, at most 2-dimensional
 - So far only $\gamma\gamma$ can combine measurements of different observables, but $\gamma\gamma$ doesn't provide decay information
 - Can't be combined with SXTS production measurements
- a direct fit to SMEFT Wilson coefficients just for decays?
 - A bit far from the experimental observables, but "far" is subjective (SMEFT is an interpretation, not a measurement)
 - ~same PROs and CONs as POs
 - But possible
 - Are all possible degrees of freedom (every Lorentz Structure allowed in Higgs decays) included in SMEFT?