Ilaria Brivio

Institut für Theoretische Physik, Universität Heidelberg

based on 1906.06949 in collaboration with T. Corbett and M. Trott

The SMEFT

fundamental assumptions:

- new physics nearly decoupled: $\Lambda \gg (v, E)$
- ▶ at the accessible scale: **SM** fields + symmetries

a Taylor expansion in canonical dimensions (ν/Λ or E/Λ):

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$ C_i free parameters (Wilson coefficients)

 \mathcal{O}_i invariant operators that form a complete, non redundant basis

the complete SMEFT Lagrangian, truncated at a given order, is always* a self-consistent QFT and a valid description of Nature

* assuming nearly-decoupled BSM matching SM sym + fields and evaluating at $E \ll \Lambda$

Ilaria Brivio (ITP Heidelberg)

the complete SMEFT Lagrangian, truncated at a given order, is always* a self-consistent QFT and a valid description of Nature

- model-independent (within assumptions)
- ▶ allows systematic one-loop improvement , RG evolution
- avoids inconsistencies / basis dependence

^ assuming nearly-decoupled BSM matching SM sym + fields and evaluating at $E \ll \Lambda$

the complete SMEFT Lagrangian, truncated at a given order, is always* a self-consistent QFT and a valid description of Nature

- model-independent (within assumptions)
- ▶ allows systematic one-loop improvement , RG evolution
- avoids inconsistencies / basis dependence
- a universal language for data interpretation
- allows long-term, extensible analysis plan
- common framework for LHC and lower E experiments

* assuming nearly-decoupled BSM matching SM sym + fields and evaluating at $\textit{E} \ll \Lambda$

the complete SMEFT Lagrangian, truncated at a given order, is always* a self-consistent QFT and a valid description of Nature

- model-independent (within assumptions)
- ▶ allows systematic one-loop improvement , RG evolution
- avoids inconsistencies / basis dependence
- a universal language for data interpretation
- allows long-term, extensible analysis plan
- common framework for LHC and lower E experiments

* assuming nearly-decoupled BSM matching SM sym + fields and evaluating at $E \ll \Lambda$

Global SMEFT analyses

ultimate goal: include all the parameters that contribute significantly

Global SMEFT analyses

ultimate goal: include all the parameters that contribute significantly

- individual processes necessarily have blind directions
- combination of different processes / sectors required

Global SMEFT analyses

ultimate goal: include all the parameters that contribute significantly

- individual processes necessarily have blind directions
- combination of different processes / sectors required

How many parameters? depends on: | flavor assumptions linear / quadratic terms retained LO/NLO QCD (SMEFT)

For reference:

		total $N_f = 3$	WZH pole obs.
	general	2499	~ 46
	MFV	~ 108	~ 30
	$U(3)^{5}$	~ 70	~ 24
0,.	Jiang, Trott 1709	.06492	

WZH pole obs. = resonance-dominated processes. Interference only.

Ilaria Brivio (ITP Heidelberg)

Brivi

Example 1: Higgs and EW processes

- $U(3)^5$ flavor symmetry
- all relevant interactions included 23 relevant operators

tree-level, interference only

Brivio, Hays, Smith, Trott, Žemaitytė in preparation

also: Ellis, Murphy, Sanz, You 1803.03252

Z,W couplings

$$\begin{aligned} \mathcal{Q}_{HI}^{(1)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{l}\gamma^{\mu}l)\\ \mathcal{Q}_{He} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{e}\gamma^{\mu}e)\\ \mathcal{Q}_{Hq}^{(1)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{q}\gamma^{\mu}q)\\ \mathcal{Q}_{Hq}^{(3)} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}^{i}H)(\overline{q}\sigma^{i}\gamma^{\mu}q)\\ \mathcal{Q}_{Hu} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{u}\gamma^{\mu}u)\\ \mathcal{Q}_{Hd} &= (iH^{\dagger}\overleftrightarrow{D}_{\mu}H)(\overline{d}\gamma^{\mu}d) \end{aligned}$$

 $\mathcal{Q}_{HD} = (D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H)$ $\mathcal{Q}_{HWB} = (H^{\dagger} \sigma^{i} H) W^{i}_{\mu\nu} B^{\mu\nu}$ $\mathcal{Q}_{HI}^{(3)} = (iH^{\dagger} \overleftarrow{D}_{\mu}^{i} H)(\overline{l}\sigma^{i}\gamma^{\mu} I)$ $\mathcal{Q}'_{\mu} = (\bar{l}_{p}\gamma^{\mu}l_{r})(\bar{l}_{r}\gamma^{\mu}l_{p})$

TGC

input quantities

$$\mathcal{Q}_{W} = \varepsilon_{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$$

Bhabha scattering

$$\begin{aligned} \mathcal{Q}_{ee} &= (\bar{e}\gamma^{\mu}e)(\bar{e}\gamma^{\mu}e) \\ \mathcal{Q}_{le} &= (\bar{l}\gamma^{\mu}l)(\bar{e}\gamma^{\mu}e) \\ \mathcal{Q}_{ll} &= (\bar{l}_{p}\gamma^{\mu}l_{p})(\bar{l}_{r}\gamma^{\mu}l_{r}) \end{aligned}$$

 $Q_{Hbox} = (H^{\dagger}H) \square (H^{\dagger}H)$ $Q_{HG} = (H^{\dagger}H)G^{a}_{\mu\nu}G^{a\mu\nu}$ $Q_{HB} = (H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$ $\mathcal{Q}_{HW} = (H^{\dagger}H)W^{i}_{\mu\nu}W^{i\mu\nu}$ $Q_{uH} = (H^{\dagger}H)(\bar{q}\bar{H}u)$ $Q_{dH} = (H^{\dagger}H)(\bar{q}Hd)$ $Q_{eH} = (H^{\dagger}H)(\bar{I}He)$ $\mathcal{Q}_{G} = \varepsilon_{abc} G_{\mu}^{a\nu} G_{\nu}^{b\rho} G_{\rho}^{c\mu}$ $Q_{uG} = (\bar{q}\sigma^{\mu\nu}T^{a}Hu)G^{a}_{\mu\nu}$

H processes

PRELIMINARY

Ilaria Brivio (ITP Heidelberg)

Example 2: top quark processes

 $\blacktriangleright U(2)_q \times U(2)_u \times U(2)_d$

top interactions only for now

up to NLO QCD, quadratic SMEFT

Brivio,Bruggisser,Maltoni,Moutafis,Plehn, Vryonidou,Westhoff,Zhang 1910.03606

22 relevant operators

also: Hartland,Maltoni,Nocera,Rojo, Slade,Vryonidou,Zhang 1901.05965

	tīZ, tīW		٢	tZ	
		single <i>t</i>		$\begin{aligned} \mathcal{Q}_{tB} &= (\bar{Q}\tilde{H}\sigma^{\mu\nu}t)B_{\mu\nu} \\ \mathcal{Q}_{Ht} &= (iH^{\dagger}\overleftarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t) \end{aligned}$	
ſ	tī	${\cal Q}_{tG}=(ar Q ilde H \sigma^{\mu u}T^At)G^A_{\mu u}$		$egin{aligned} \mathcal{Q}_{bW} &= (ar{\mathcal{Q}} H \sigma^{\mu u} \sigma^k b) W^k_{\mu u} \ \mathcal{Q}_{Htb} &= (i ilde{H}^\dagger D_\mu H) (ar{t} \gamma^\mu b) \end{aligned}$	
	$\mathcal{Q}_{Qu}^{1} = (\bar{Q}\gamma\mu Q)(\bar{u}\gamma^{\mu}u)$ $\mathcal{Q}_{Qd}^{1} = (\bar{Q}\gamma\mu Q)(\bar{d}\gamma^{\mu}d)$ $\mathcal{Q}_{tw}^{1} = (\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$ $\mathcal{Q}_{tw}^{1} = (\bar{t}\gamma_{\nu}t)(\bar{d}\gamma^{\mu}d)$	$\begin{array}{l} \mathcal{Q}^{8}_{Qu} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{u}\gamma^{\mu}T^{A}u)\\ \mathcal{Q}^{8}_{Qd} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{d}\gamma^{\mu}T^{A}d)\\ \mathcal{Q}^{t}_{tu} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}\gamma^{\mu}T^{A}u)\\ \mathcal{Q}^{8}_{tu} = (\bar{t}\gamma_{\nu}T^{A}t)(\bar{d}\gamma^{\mu}T^{A}d) \end{array}$		$ \begin{array}{l} \mathcal{Q}^3_{HQ} = (i H^\dagger \overleftarrow{D}^i_{\mu} H) (\overline{Q} \sigma^i \gamma^{\mu} Q) \\ \mathcal{Q}^1_{HQ} = (i H^\dagger \overleftarrow{D}^{\mu} H) (\overline{Q} \gamma^{\mu} Q) \\ \mathcal{Q}_{tW} = (\overline{Q} \widetilde{H} \sigma^{\mu\nu} \sigma^k t) W^k_{\mu\nu} \end{array} $	
	$\mathcal{Q}_{Qq}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$ $\mathcal{Q}_{tq}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$ $\mathcal{Q}_{tq}^{1} = (\bar{t}\gamma_{\mu}t)(\bar{q}\gamma^{\mu}q)$	$ \begin{aligned} & \mathcal{L}_{tq} = (t_{1\mu} + t) (\vec{a}\gamma^{\mu} T^{A} q) \\ & \mathcal{Q}_{Qq}^{1,8} = (\vec{Q}\gamma_{\mu} T^{A} Q) (\vec{q}\gamma^{\mu} T^{A} q) \\ & \mathcal{Q}_{tq}^{8} = (\vec{t}\gamma_{\mu} T^{A} t) (\vec{q}\gamma^{\mu} T^{A} q) \end{aligned} $		$ \begin{aligned} & \mathcal{Q}_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q) \\ & \mathcal{Q}_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\sigma^{k}T^{A}Q)(\bar{q}\gamma^{\mu}\sigma^{k}T^{A}q) \end{aligned} $	

Ilaria Brivio (ITP Heidelberg)

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

SMEFT: probe separately production and decay (

$$Br(H \to f) = \frac{\Gamma(H \to f)}{\Gamma_H^{\text{tot}}}$$

Ilaria Brivio (ITP Heidelberg)

An important observable: the Higgs width

a crucial observable for the Higgs sector

SM:
$$\Gamma_H \simeq 4 \text{ MeV} \rightarrow \frac{\Gamma_H}{m_H} \simeq 3 \cdot 10^{-5} \ll 1$$

 \Rightarrow Higgs measurements can be factored into

$$\sigma(i \to H) \times Br(H \to f)$$

SMEFT: probe separately production and decay

$$Br_{\rm SMEFT}(H \to f) = \left[\frac{\Gamma(H \to f)}{\Gamma_{H}^{\rm tot}}\right]_{\rm SM} \left[1 + \frac{\delta\Gamma(H \to f)}{\Gamma_{\rm SM}(H \to f)} - \frac{\delta\Gamma_{H}^{\rm tot}}{\Gamma_{H,\rm SM}^{\rm tot}}\right]$$

▶ both $\delta\Gamma(H \to f)$ and $\delta\Gamma_H^{\text{tot}}$ need to be determined

• $\delta \Gamma_H^{\text{tot}}$ enters all processes \rightarrow **strong impact** on global SMEFT analyses!

Ilaria Brivio (ITP Heidelberg)

The Higgs width in the SMEFT - setup

Focus on the leading contributions:

• LO in the EFT: up to SM - \mathcal{L}_6 interference.

$$\Gamma_{H} = \Gamma_{H,SM} \left[1 + \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} \right] \qquad \qquad \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} = \sum_{i} a_{i} \bar{C}_{i} = \sum_{i} a_{i} \left(C_{i} \frac{v^{2}}{\Lambda^{2}} \right)$$

tree level.

SM couplings $H\gamma\gamma$, $HZ\gamma$, Hgg included as effective vertices for $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$. Neglected in other channels.

up to 4-body decays.

The Higgs width in the SMEFT - setup

Focus on the leading contributions:

• LO in the EFT: up to SM - \mathcal{L}_6 interference.

$$\Gamma_{H} = \Gamma_{H,SM} \left[1 + \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} \right] \qquad \qquad \frac{\delta \Gamma_{H}}{\Gamma_{H,SM}} = \sum_{i} a_{i} \bar{C}_{i} = \sum_{i} a_{i} \left(C_{i} \frac{v^{2}}{\Lambda^{2}} \right)$$

tree level.

SM couplings $H\gamma\gamma$, $HZ\gamma$, Hgg included as effective vertices for $H \rightarrow f\bar{f}\gamma / \gamma\gamma / gg$. Neglected in other channels.

up to 4-body decays.

Conventions and assumptions:

Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

- $U(3)^5$ flavor symmetry $\rightarrow g_{Hff} \sim y_f$ also in the SMEFT
- **inclusive** calculation, not differential \rightarrow CP odd terms do not contribute
- ▶ 2 input schemes: $\{m_W, m_Z, G_F\}$, $\{\alpha_{em}, m_Z, G_F\}$ → backup

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $\begin{array}{l} H \rightarrow \bar{f}f \\ H \rightarrow gg \\ H \rightarrow \gamma\gamma \\ H \rightarrow \bar{f}f\gamma \\ H \rightarrow 4f \end{array}$

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $H \rightarrow \overline{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \overline{f}f\gamma$ $H \rightarrow 4f$

$$\frac{\Gamma(H \to \bar{f}f)}{\Gamma_{SM}(H \to \bar{f}f)} \simeq 1 + 2\delta g_{Hff}$$

$$\delta g_{Hff} = \bar{C}_{H_0} - \frac{\bar{C}_{HD}}{4} - \bar{C}_{HI}^{(3)} + \frac{\bar{C}_{II}}{2} - \frac{5}{2}\bar{C}_{fH}$$

Alonso, Jenkins, Manohar, Trott 1312.2014

- renorm. of the H field
- contrib. to μ decay $\rightarrow G_F \rightarrow v$
- ► direct \mathcal{O}_{fH} contribution $\left(-\frac{3}{2}\bar{C}_{fH}\right)$ + contrib. to $m_f \rightarrow y_f$ $\left(-\bar{C}_{fH}\right)$
- $4f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

 $H \rightarrow \bar{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \bar{f}f\gamma$ $H \rightarrow 4f$

$$rac{\Gamma(h o gg)}{\Gamma^{SM}(h o gg)} \simeq 1 + rac{16\pi^2}{g_s^2 I^g} ar{C}_{HG}, \qquad I^g \simeq 0.375$$
Manohar,Wise 0601212

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

$$H \rightarrow \bar{f}f$$

$$H \rightarrow gg$$

$$H \rightarrow \gamma\gamma$$

$$H \rightarrow \bar{f}f\gamma$$

$$H \rightarrow 4f$$

Bergström,Hulth Nucl.Phys.B259(1985)137 Manohar,Wise 0601212

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

leading channels:

$$H \rightarrow \overline{f}f$$

$$\longrightarrow H \rightarrow gg$$

$$\longrightarrow H \rightarrow \gamma\gamma$$

$$\longrightarrow H \rightarrow \overline{f}f\gamma$$

$$H \rightarrow 4f$$

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma^{SM}(h \to \gamma \gamma)} \simeq 1 \underbrace{16\pi^2}_{e^2 I^{\gamma}} \gamma \gamma, \qquad I^{\gamma} \simeq -1.65$$
$$\mathscr{C}_{\gamma\gamma} = s_{\theta}^2 \bar{C}_{HW} + c_{\theta}^2 \bar{C}_{HB} - s_{\theta} c_{\theta} \bar{C}_{HWB}$$
Bereström, Hulth Nucl. Phys. B259(1985)137

Bergström,Hulth Nucl.Phys.B259(1985)137 Manohar,Wise 0601212

loop-factor enhancement

in the relative correction:

tree-level SMEFT vs loop SM

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

Ilaria Brivio (ITP Heidelberg)

leading channels:

$$H \rightarrow \bar{f}f$$

$$H \rightarrow gg$$

$$H \rightarrow \gamma\gamma$$

$$H \rightarrow \bar{f}f\gamma$$

$$H \rightarrow 4f$$

available as $H \rightarrow ZZ^*$, $H \rightarrow WW^* \times Br(Z, W)$ relying on narrow width approx. for Z, W.

good in SM but not sufficient in the SMEFT!

<u>main reason</u>: tree $\gamma\gamma$, $Z\gamma$ mediated diagrams

also missing:

- CC NC interference
- crossed-current interference in ZZ diagrams
- $\delta \Gamma_V$, δm_V^2 corrections for off-shell boson

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

leading channels:

 $H \rightarrow \bar{f}f$ $H \rightarrow gg$ $H \rightarrow \gamma\gamma$ $H \rightarrow \bar{f}f\gamma$ $H \rightarrow 4f$

available as $H \rightarrow ZZ^*$, $H \rightarrow WW^* \times Br(Z, W)$ relying on narrow width approx. for Z, W.

good in SM but not sufficient in the SMEFT!

<u>main reason</u>: tree $\gamma\gamma$, $Z\gamma$ mediated diagrams

also missing:

- CC NC interference
- crossed-current interference in ZZ diagrams
- $\delta \Gamma_V$, δm_V^2 corrections for off-shell boson

- 4 $f, \gamma\gamma, \bar{b}b$ most relevant ones individually
- all need to be calculated for $\delta \Gamma_H^{\text{tot}} \to Br$

$H \rightarrow 4f$ in the SMEFT

(1) corrections to SM diagrams

 $\propto g_{\mu\nu}$ (SM-like) $\propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} (Z_{\mu\nu} Z^{\mu\nu} h)$ $\delta g_L, \delta g_R$

 $-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z$ $p^2 - m_z^2 + i\Gamma_Z m_Z$

> hard to extract from MC simulation! full treatment requires analytic calculation

$H \rightarrow 4f$ in the SMEFT

1 corrections to SM diagrams

 $\begin{array}{l} \propto g_{\mu\nu} \; (\text{SM-like}) \\ \propto g_{\mu\nu} p \cdot q - p_{\nu} q_{\mu} \left(Z_{\mu\nu} Z^{\mu\nu} h \right) \end{array}$

 $\delta g_L, \delta g_R$

 $\frac{-im_Z\delta\Gamma_Z + (2m_Z - i\Gamma_Z)\delta m_Z}{p^2 - m_Z^2 + i\Gamma_Z m_Z}$

2 genuine SMEFT diagrams

$H \rightarrow 4f$ in the SMEFT - complexity

$$h \rightarrow e^+ e^- e^+ e^-$$

SM

interfering with

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ in the SMEFT - complexity

 $h\to \bar u\, u\, \bar d\, d$

SM

interfering with

$H \rightarrow 4f$ - analytic calculation

fully analytical treatment. automated with general decomposition:

$$\mathcal{A}_{V_{1}} \qquad i \qquad \mathcal{A}^{\dagger}_{J} \sim g_{HV_{1}V_{2}} g_{HV_{3}V_{4}} \sum_{l} \mathcal{T}^{(n)}_{J} \qquad \mathcal{A}^{\dagger}_{L,R} \sim g_{HV_{1}V_{2}} g_{HV_{3}V_{4}} \sum_{n} \mathcal{T}^{(n)}_{J} \qquad \mathcal{T}^{(n)}_{J} \qquad \mathcal{L}^{(n)}_{L,R} = \mathcal{K}^{(n)} \left(g_{L,R}^{ij,V_{1}}, g_{L,R}^{ij,V_{3}}, g_{L,R}^{kl,V_{2}}, g_{L,R}^{kl,V_{4}} \right) \qquad \mathcal{F}^{(n)}_{V_{1}V_{2}V_{3}V_{4}} \left(p_{a}, m_{a} \right), \quad a = \{i, j, k, l\}$$

for $m_a \equiv 0$ there are only **8** independent $\mathcal{F}_{V_1 V_2 V_3 V_4}$. For each $\{V\}$ set:

- numerical integration of phase space: Vegas in Mathematica T. Hahn 0404043
- cross-check: RAMBO + 2 independent parameterizations of phase space

Kleiss, Stirling, Ellis Comput. Phys. Commun. 40(1986) 359

Ilaria Brivio (ITP Heidelberg)

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and *CP* terms
- 2. automatic field redefinitions to have **canonical kinetic terms** and **parameter shifts** due to the choice of an input parameters set
- 3. 6 implementations: 3 flavor assumptions \times 2 input schemes

			Standard Model Effectiv	e Field Theory The SM	IEFTsim package				
feynru	les.irmp.ucl.ac.be/wiki/SN	IEFT	Authors Bara Brivo, Yun Jaang and Michael Trott Ilaria briviofinebi, ku, dk., vun ljanofinebi, ku, dk., michael, trottBcern.ch						
Pre-ex	ported UFO files (include restriction	cards)	NBIA and Discovery Center, Niefs Bohr Instit	ute, University of Copenhagen					
	Set A			Set B					
	a scheme	mw scheme		α scheme	m _W scheme				
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	. <mark>⊎SMEFTsim_</mark> A	general_MwScheme_UFO.tar.gz	↓SMEFT_alpha_UFO.zip ↓	SMEFT_mW_UFO.zip 🕁				
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz	SMEFTsim_A	MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip ₼				
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A	U35_MwScheme_UFO.tar.gz 🛃	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip				

* LO, unitary gauge implementation

Ilaria Brivio (ITP Heidelberg)

e.g
$$\delta \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e} / \Gamma_{h \to e^+ \mu^- \bar{\nu}_\mu \nu_e, SM}$$

extracting dependence on Wilson coefficients:

- estimate full $\Gamma(h \rightarrow W^+ \mu^- \bar{\nu}_{\mu})$ in SM limit
- ▶ estimate pure interference contribution with one C_i turned on (×5 values) → linear interpolation $x_i + y_i \ C_i \rightarrow \text{extract} \ y_i$
- ► estimate full $\Gamma(h \to W^+ \mu^- \bar{\nu}_{\mu})$ with one C_i turned on (×5 values) → quadratic interpolation $x_i + y_i C_i + z_i C_i^2 \to \text{extract } y_i$

Ilaria Brivio (ITP Heidelberg)

e.g.
$$\delta\Gamma_{h\to e^+\mu^-\bar{\nu}_{\mu}\nu_{e}}/\Gamma_{h\to e^+\mu^-\bar{\nu}_{\mu}\nu_{e},SM}$$

normalization:

 $\bar{C}_i = C_i \left(\frac{v^2}{\Lambda^2} \right)$

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP Heidelberg)

e.g.
$$\delta\Gamma_{h\to e^+\mu^-\bar{\nu}_\mu\nu_e}/\Gamma_{h\to e^+\mu^-\bar{\nu}_\mu\nu_e,SM}$$

normalization:

$$\bar{C}_i = C_i \left(\frac{v^2}{\Lambda^2} \right)$$

	theor	У	MG interf	М	G full xs
cHW	-1.48	788	-1.48776	-	1.48849
cHbox	2.		1.99887	1	.9991
cHD	-0.5		-0.499949	_	0.501474
cHl3	-1.99	753	-3.69688		3.69483
cll1	1.998	15	2.00286	2	.0001
			1		
analytic calculation		y _i /Γ _{h-1}	$e^+ \nu_e \mu^- \bar{\nu}_\mu, SM$		$y_i/\Gamma_{h \to e^+ \nu_e \mu^- \bar{\nu}_\mu, SM}$
rivio,Corbett,Trott 1906.06949		from pu	ire interference		from linearized
					tuli wiath

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP Heidelberg)

В

 $\delta\Gamma_W$ omitted here: requires hacking propagator corrections in MC

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ analytic - results

Example:
$$H \to e^+ e^- \mu^+ \mu^ m_f \equiv 0, m_W$$
 scheme

$$\frac{\delta \Gamma(H \to e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \to e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i = \sum_i a_i \left(C_i \frac{v^2}{\Lambda^2} \right)$$

	\bar{C}_{HW}	\bar{C}_{HB}	\bar{C}_{HWB}	$\bar{C}_{H^{\Box}}$	\bar{C}_{HD}	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	\bar{C}_{He}	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	\bar{C}_{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
Ζ	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{ll} {\sf Z} & {\sf corrections to SM diagram} \\ {\sf A} & \gamma {\sf diagrams} \\ {\sf E} & {\sf contact diagrams (HZee)} \\ {\sf G} & \delta \Gamma_Z^{\rm tot}/\Gamma_{Z,SM} {\sf on + off-shell Z} \end{array}$$

Ilaria Brivio (ITP Heidelberg)

$H \rightarrow 4f$ analytic - results

Example:
$$H \to e^+ e^- \mu^+ \mu^ m_f \equiv 0, m_W$$
 scheme
$$\frac{\delta \Gamma(H \to e^+ e^- \mu^+ \mu^-)}{\Gamma_{\rm SM}(H \to e^+ e^- \mu^+ \mu^-)} = \sum_i a_i \bar{C}_i = \sum_i a_i \left(C_i \frac{v^2}{\Lambda^2} \right)$$

	\bar{C}_{HW}	\bar{C}_{HB}	\bar{C}_{HWB}	$\bar{C}_{H^{\Box}}$	\bar{C}_{HD}	$ar{C}_{HI}^{(1)}$	$ar{C}_{HI}^{(3)}$	\bar{C}_{He}	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	\bar{C}_{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
Z	-0.78	-0.22	0.30	2	0.17	4.38	-1.62	-3.52					3.
А	1.04	-1.08	-0.68										
Е						-2.23	-2.23	1.80					
G			-0.38		0.06	0.15	1.14	0.15	-0.39	-1.34	-0.20	0.15	-0.83
tot	0.26	-1.30	-0.76	2.	0.23	2.30	-2.71	-1.58	-0.39	-1.34	-0.20	0.15	2.17

$$\begin{array}{ll} \mathsf{Z} & \text{corrections to SM diagram} \\ \mathsf{A} & \gamma \text{ diagrams} \\ \mathsf{E} & \text{contact diagrams } (HZee) \\ \mathsf{G} & \delta \Gamma_Z^{\mathrm{tot}}/\Gamma_{Z,SM} \text{ on } + \text{ off-shell } Z \end{array}$$

Ilaria Brivio (ITP Heidelberg)

(1) photon-mediated diagrams

 $\mathcal{O}(1-250)\%$ effect

		with γ		,	without γ	
	\bar{C}_{HW}	Ē _{HΒ}	\bar{C}_{HWB}	Ē _{ΗW}	Ē _{HB}	\bar{C}_{HWB}
$h ightarrow e^+ e^- \mu^+ \mu^-$	0.26	-1.30	-0.38	-0.77	-0.22	0.30
$h ightarrow ar{u} u ar{c} c$	1.45	-2.63	-0.29	-0.77	-0.22	1.33
$h ightarrow e^+ e^- \bar{d} d$	0.50	-1.55	-0.37	-0.77	-0.22	0.47
$h \rightarrow e^+ e^- e^+ e^-$	0.02	-2.28	0.27	-0.76	-0.21	0.44
$h ightarrow ar{u} u ar{u} u$	1.39	-2.72	-0.14	-0.76	-0.21	1.19
$h \to e^+ e^- \bar{\nu}_e \nu_e$	-1.49	0.01	-0.06	-1.48	-0.007	-0.07

(2) Z - W interference terms

 $\mathcal{O}(1-200)\%$ effect

 $\delta \Gamma(H \to e^+ e^- \bar{\nu}_e \nu_e) / \Gamma_{\rm SM}$ omitting γ and $\delta \Gamma_Z, \delta \Gamma_W$ contrib.

	\bar{C}_{HW}	Ē _{HB}	\bar{C}_{HWB}	$\bar{C}_{H_{\Box}}$	Ē _{HD}	$ar{C}^{(1)}_{HI}$	$\bar{C}_{HI}^{(3)}$	Ē _{He}	$\bar{C}_{Hq}^{(1)}$	$\bar{C}_{Hq}^{(3)}$	\bar{C}_{Hu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
ZZ	-0.04	-0.01	-0.003	0.09	-0.008	0.004	-0.19	-0.04	0	0	0	0	0.14
WW	-1.49	0	0	2.0	-0.50	0	-3.77	0	0	0	0	0	3.00
WZ	0.04	0.004	-0.06	-0.10	-0.04	-0.01	0.21	0	0	0	0	0	-0.14
full	-1.49	-0.007	-0.07	2.	-0.55	-0.008	-3.74	-0.04	0	0	0	0	3.
NW	-1.46	-0.01	-0.003	2.	-0.49	0.004	-3.77	-0.04	0.	0.	0.	0.	3.

fullZZ + WW + WZNWZZ + WW

(3) NC crossed - interference terms

 $\mathcal{O}(\text{few}-40)\%$ effect

 $\delta\Gamma(H\to e^+e^-e^+e^-)/\Gamma_{\rm SM}\,$ incl. only ZZ and HZee diagrams

	\bar{C}_{HW}	Ē _{HB}	\bar{C}_{HWB}	$\bar{C}_{H \circ}$	\bar{C}_{HD}	$ar{\mathcal{C}}_{H\!I}^{(1)}$	$ar{C}_{HI}^{(3)}$	\bar{C}_{He}	$ar{C}_{Hq}^{(1)}$	$ar{C}_{Hq}^{(3)}$	Ē _{Ηu}	\bar{C}_{Hd}	$\bar{C}'_{\prime\prime}$
full	-0.75	-0.22	0.43	2.	0.28	2.09	-3.91	-1.64	0	0	0	0	3.
NW	-0.78	-0.221	0.30	2.	0.17	2.15	-3.85	-1.73	0.	0.	0.	0.	3.

$$\begin{array}{c|c|c|c|c|c|} \mathsf{full} & |\mathcal{A}_{ijkl}|^2 + |\mathcal{A}_{ilkj}|^2 + 2\mathrm{Re}\mathcal{A}_{ijkl}\mathcal{A}_{ilkj}^{\dagger} \\ \mathsf{NW} & |\mathcal{A}_{ijkl}|^2 + |\mathcal{A}_{ilkj}|^2 \end{array}$$

Ilaria Brivio (ITP Heidelberg)

(4) $\delta \Gamma_V$, δm_V from off-shell boson

 $\mathcal{O}(\mathsf{few})\%$ effect

narrow width approx.:

$$\frac{\delta\Gamma(H \to VV^* \to 4f)}{\Gamma_{SM}(H \to VV^* \to 4f)} = (-1)\frac{\delta\Gamma_V}{\Gamma_{V,SM}} + \dots$$

full calculation:

$H \rightarrow 4f$ summary

- we did a **fully analytic** calculation, with numerical integration of phase space
- ▶ also generated all channels with MG5_aMC@NLO using SMEFTsim → where MC well-behaved: agreement to 1% or better ✓
- analytic treatment has a few <u>advantages</u>:
 - allows to separate contributions
 - easier to linearize in $\delta \Gamma_V, \delta m_V$
 - \blacktriangleright more stable for the massless fermions case with γ diagrams
 - cancellations are reproduced exactly
 - calculation can be automated in a dedicated package

```
\cdots a new reweighting tool coming soon
```

some previously neglected contributions turn out to be relevant:

 γ diagrams and Z - W interference

putting together all the main contributions* we obtain

$$\begin{split} \Gamma_{H}^{\text{tot}} &= \Gamma_{H,SM}^{\text{tot}} \left[1 + \frac{\delta \Gamma_{H}^{\text{tot}}}{\Gamma_{H,SM}^{\text{tot}}} \right] \\ \Gamma_{H,SM}^{\text{tot}} &= 4.100 \text{ MeV} \\ \frac{\delta \Gamma_{H}^{\text{tot}}}{\Gamma_{H,SM}^{\text{tot}}} &= -1.50 \, \tilde{C}_{HB} - 1.21 \, \tilde{C}_{HW} + 1.21 \, \tilde{C}_{HWB} + 50.6 \, \tilde{C}_{HG} \\ &+ 1.83 \, \tilde{C}_{Ha} - 0.43 \, \tilde{C}_{HD} + 1.17 \, \tilde{C}_{H}' \\ &- 7.85 \, Y_c \, \Re \, \tilde{C}_{uH} - 48.5 \, Y_b \, \Re \, \tilde{C}_{dH} - 12.3 \, Y_\tau \, \Re \, \tilde{C}_{eH} \\ &+ 0.002 \, \tilde{C}_{Hq}^{(1)} + 0.06 \, \tilde{C}_{Hq}^{(3)} + 0.001 \, \tilde{C}_{Hu} - 0.0007 \, \tilde{C}_{Hd} \\ &- 0.0009 \, \tilde{C}_{HI}^{(1)} - 2.32 \, \tilde{C}_{HI}^{(3)} - 0.0006 \, \tilde{C}_{He}, \end{split}$$

in the $\{m_W, m_Z, G_F\}$ scheme.

$$*gg + \gamma\gamma + \bar{b}b + \bar{c}c + \tau^+\tau^- + 4f + \bar{f}f\gamma$$

Recap & take-home

- ► The **SMEFT** is a well-defined, general framework for BSM searches
- It is worth using its full power with a truly global analysis: not just SM stress-test but <u>a means to understand the global picture</u> through precision measurements
- Expect 20-30 parameters for the basic scenario in a Higgs/EW/top analysis
- ▶ improved calculation of $H \rightarrow 4f \rightarrow \delta \Gamma_{H}^{\text{tot}}$ without relying on the narrow width approx. for *Z*, *W* \rightarrow <u>crucial</u> for fits of the Higgs sector
- an automated package for lhe reweighting to appear soon!
- possible refinements: full massive fermions treatment phase space integration with cuts → acceptance corrections

Ilaria Brivio (ITP Heidelberg)

Backup slides

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, Vryonidou, Westhoff, Zhang 1910.03606

21/19

Run II, ATLAS+CMS, 68% and 95% C.L.

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}d_{r}arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger} \varphi \widetilde{G}^{A}_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u} T^A d_r) \varphi G^A_{\mu u}$	$Q_{arphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$

Ilaria Brivio (ITP Heidelberg)

The Warsaw basis

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p \gamma_\mu l_r) (ar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r)(ar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$Q_{lq}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$		$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-viol	lating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(d_p^{lpha}) ight.$	$)^{T}Cu_{r}^{\beta}\left[(q_{s}^{\gamma j})^{T}Cl_{t}^{k} ight]$			
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j}) ight.$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$		
$Q_{quqd}^{(8)}$	$Q_{quqd}^{(8)} (\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$		$arepsilon^{lphaeta\gamma}arepsilon_{jk}arepsilon_{mm}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(q_s^{\gamma m})^T C l_t^n ight]$				
$Q_{lequ}^{(1)} \qquad (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$		Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight.$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$						

Ilaria Brivio (ITP Heidelberg)

when testing a theory:

set of input measurements

SM:

$$\begin{split} & \Gamma(\mu \to e\nu\nu) \to \hat{G}_F(\bar{g}_1, \bar{g}_2, \bar{\nu}) \\ & \hat{m}_Z(\bar{g}_1, \bar{g}_2, \bar{\nu}) \\ & \text{Coulomb potential} \to \alpha_{\rm em}^{\circ}(\bar{g}_1, \bar{g}_2) \\ & \hat{m}_h(\bar{\lambda}, \bar{\nu}) \\ & \hat{m}_f(\bar{y}_f, \bar{\nu}) \\ & \vdots \end{split}$$

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

when testing a theory:

SM:

invert the input obs. definitions to get: $\bar{v} = \hat{v}(\hat{G}_F)$ $\bar{\lambda} = \hat{\lambda}(\hat{m}_h, \hat{G}_F)$ $\bar{y}_f = \hat{y}_f(\hat{m}_f, \hat{G}_F)$ $\bar{g}_1 = \hat{g}_1(\alpha_{\rm em}, \hat{G}_F, \hat{m}_Z)$ $\bar{g}_2 = \hat{g}_2(\alpha_{\rm em}, \hat{G}_F, \hat{m}_Z)$

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

when testing a theory:

SM:

analytic calculations Monte Carlo generation

e.g. at LO $\bar{m}_W = \bar{m}_Z \cos \bar{\theta}$

. . .

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

Ilaria Brivio (ITP Heidelberg)

when testing a theory:

 $\hat{m}_W \stackrel{?}{=} \bar{m}_W$

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

when testing a theory:

SMEFT:

$$\begin{split} & \Gamma(\mu \to e\nu\nu) \to \hat{G}_F(\bar{g}_1, \bar{g}_2, \bar{\nu}, \mathbf{C}_i) \\ & \hat{m}_Z(\bar{g}_1, \bar{g}_2, \bar{\nu}, \mathbf{C}_i) \\ & \text{Coulomb potential} \to \alpha_{\text{em}}^{-}(\bar{g}_1, \bar{g}_2, \mathbf{C}_i) \\ & \hat{m}_h(\bar{\lambda}, \bar{\nu}, \mathbf{C}_i) \\ & \hat{m}_f(\bar{y}_f, \bar{\nu}, \mathbf{C}_i) \\ & \vdots \end{split}$$

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

when testing a theory:

SMEFT:

invert the relations linearizing the C_i dependence $\bar{v} = \hat{v}(\hat{G}_F) + \delta v$ $\bar{\lambda} = \hat{\lambda}(\hat{m}_h, \hat{G}_F) + \delta \lambda$ $\bar{y}_f = \hat{y}_f(\hat{m}_f, \hat{G}_F) + \delta y_f$ $\bar{g}_1 = \hat{g}_1(\alpha_{\text{em}}^c, \hat{G}_F, \hat{m}_Z) + \delta g_1$ $\bar{g}_2 = \hat{g}_2(\alpha_{\text{em}}^c, \hat{G}_F, \hat{m}_Z) + \delta g_2$

in a numeric code: convenient to replace $\bar{X} \rightarrow \hat{X} + \frac{\delta X}{\delta X}$ everywhere in \mathcal{L}

 \bar{X} = parameter in canonical \mathcal{L} . \hat{X} = parameter inferred from SM relations.

Ilaria Brivio (ITP Heidelberg)

Input schemes for the EW sector

 $\{ lpha_{ ext{em}}, \textit{m}_{\textit{Z}}, \textit{G}_{\textit{f}} \}$ scheme

$$\begin{split} \bar{v}^2 &= \frac{1}{\sqrt{2}G_F} + \frac{\Delta G_F}{G_F} \\ \bar{s_\theta}^2 &= \frac{1}{2} \left[1 - \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2}G_F m_Z^2}} \right] \left[1 + \frac{c_{2\theta}}{2\sqrt{2}} \Delta G_F + \frac{c_{2\theta}}{4} \frac{\Delta m_Z^2}{m_Z^2} + \frac{3s_{4\theta}}{8} \frac{v^2}{\Lambda^2} C_{HWB} \right] \\ \bar{e}^2 &= 4\pi\alpha + 0 \\ \bar{g}_1 &= \frac{e}{c_\theta} \left[1 + \frac{s_\theta^2}{2c_{2\theta}} \left(\sqrt{2}\Delta G_f + \frac{\Delta m_Z^2}{m_Z^2} + 2\frac{c_\theta^3}{s_\theta} \frac{\hat{v}^2}{\Lambda^2} C_{HWB} \right) \right] \\ \bar{g}_w &= \frac{e}{s_\theta} \left[1 - \frac{c_\theta^2}{2c_{2\theta}} \left(\sqrt{2}\Delta G_f + \frac{\Delta m_Z^2}{m_Z^2} + 2\frac{s_\theta^3}{s_\theta} \frac{\hat{v}^2}{\Lambda^2} C_{HWB} \right) \right] \\ \bar{m}_W^2 &= m_Z^2 c_\theta^2 + \left[1 - \frac{\sqrt{2}s_\theta^2}{c_{2\theta}} \Delta G_F + - \frac{c_\theta^2}{c_{2\theta}} \frac{\Delta m_Z^2}{m_Z^2} - s_\theta^2 t_{2\theta} \frac{\hat{v}^2}{\Lambda^2} C_{HWB} \right] \\ \end{split}$$
 with

 $\Delta m_Z^2 = m_Z^2 \frac{v^2}{\Lambda^2} \left[\frac{C_{HD}}{2} + s_{2\theta} C_{HWB} \right] \qquad \Delta G_F = \frac{v^2}{\Lambda^2} \left[(C_{HI}^3)_{11} + (C_{HI}^3)_{22} - (C_{II})_{1221} \right]$

Ilaria Brivio (ITP Heidelberg)

ŕ

Input schemes for the EW sector

 $\{m_W, m_Z, G_f\}$ scheme

$$\begin{split} \bar{v}^2 &= \frac{1}{\sqrt{2}G_F} + \frac{\Delta G_F}{G_F} \\ \bar{s_\theta}^2 &= \left(1 - \frac{m_W^2}{m_Z^2}\right) \left[1 - c_\theta^2 \frac{\Delta m_Z^2}{m_Z^2} + \frac{s_{4\theta}}{4} \frac{v^2}{\Lambda^2} C_{HWB}\right] \\ \bar{e}^2 &= 4\sqrt{2}G_F m_W \left(1 - \frac{m_W^2}{m_Z^2}\right) \left[1 - \frac{\Delta G_F}{\sqrt{2}} - \frac{c_\theta^2}{2s_\theta^2} \frac{\Delta m_Z^2}{m_Z^2} - \frac{s_{2\theta}}{2} \frac{v^2}{\Lambda^2} C_{HWB}\right] \\ \bar{g}_1 &= \frac{e}{c_\theta} \left[1 - \frac{\Delta G_F}{\sqrt{2}} - \frac{1}{2s_\theta^2} \frac{\Delta m_Z^2}{m_Z^2}\right] \\ \bar{g}_w &= \frac{e}{s_\theta} \left[1 - \frac{\Delta G_F}{\sqrt{2}}\right] \\ \bar{m}_W^2 &= m_W^2 \to 0 \end{split}$$
 with

$$\Delta m_Z^2 = m_Z^2 \frac{v^2}{\Lambda^2} \left[\frac{C_{HD}}{2} + s_{2\theta} C_{HWB} \right] \qquad \Delta G_F = \frac{v^2}{\Lambda^2} \left[(C_{HI}^3)_{11} + (C_{HI}^3)_{22} - (C_{II})_{1221} \right]$$

Ilaria Brivio (ITP Heidelberg)