A fragmentation-based study of heavy quark production

Marco Zaro

In collaboration with Giovanni Ridolfi and Maria Ubiali

(to appear)

Marco Zaro, 17-10-2019

N \mathcal{W} On the simulation of processes with final-state g→bb splittings

- Processes relevant for Higgs physics receive large contributions from topologies with final-state g→bb splittings
- ttbb is one example: FS splittings dominant in most PS Jezo et al, arXiv:1802.00426
- Another example is ggH+bb, which dominates Hbb producion Maltoni, Deutschmann, Wiesemann, MZ, arXiv:1808.01660
- Is it appropriate to simulate these splittings at the matrix-element level?

NLO

QCD evolution

- Extra radiation off parent gluon missing if b quarks generated at ME level, even at NLO+PS
 - \rightarrow How important is it?

- Extra radiation off parent gluon missing if b quarks generated at ME level, even at NLO+PS
 - \rightarrow How important is it?
- Importance can be assessed using fragmentation functions
 - FFs include collinear emissions at all orders and resum $log(\mu_F/m)$
 - Use FFs at different logarithmic accuracy and their truncation at different orders of α_s . Truncated results \iff fixed-order computations
 - Evolution up to NNLL provided by MELA Bertone et al, arXiv:1501.00494

A fragmentation-based study of $g \rightarrow b\overline{b}$ splittings

- LO shape does not change with scale
 - Not reliable prediction
- Resummed predictions very close to each other
 - Correct shower description (LL) for gluon fragmentation
- NLO prediction harder than resummed ones (+70% for μ=100GeV)
- NNLO has decent agreement with resummed predictions
 - Justifies ttbb+jet @NLO as reference for ttbb
- Dominant effect from radiation off the parent gluon
 - Not included when b quarks are generated at the ME level
 - Large effect on exclusive observables

A fragmentation-based study of $g \rightarrow b\overline{b}$ splittings

Effects from radiation off the parent gluon in $g \rightarrow b\overline{b}$

Important effects from P_{gg} terms

Effects on inclusive observables

- Inclusive observables (e.g. heavy quark multiplicity) display much smaller effects due to higher-orders and resummation
 - (Coherence effects need to be included in order to get the correct multiplicity)
- Open questions:
 - Shall we worry about the details of b-quark kinematics?
 - Can this mis-modelling have effects on relevant observables?

Conclusions

kh

- FF-based studies highlight possible pathologies in the simulation of finalstate g→bb splittings at the ME-level, for exclusive observables
 - ◆ This holds regardless of $m_b=0$ or $m_b\neq 0$ in the ME simulation
- Radiation off parent gluon plays an important role and should be included
 - Either go to NNLO (~ttbb + jet @ NLO in the case of ttbb) or use PS to evolve gluon
 - Methods exist to merge 5FS and 4FS simulations even at fully-differential level Hoeche et al, arXiv:1904.09382
- How does this translate for more inclusive observables? Do we expect problems there?
 - + Effects seem to be much milder for heavy quark multiplicities
 - Need to understand importance of effects for physical quantities, realistic observables (b-jet), and beyond collinear kinematics (recoil, etc...)