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Remainder
Anisotropic Conductive Film (ACF)

mvicente@cern.ch – 21/06/19

¨ 18 µm adhesive film filled with 3 µm conductive micro-particles
¤ Curing starts at ~ 100 ̊C
¤ Recomended bonding temperature = 150-180 ̊C

n ACF-63: Ni/polymer – Film with high density of particles

n ACF-64: Au/Ni/polymer – Film with lower particle density

¤ Pre-bonding: 10 kg at 80 ̊C during 10 seconds

¤ Bonding with 100 kg force

n Film flow at 80 ̊C Tflow seconds and final film curing at 150 ̊C for 18 s

¨ S10: Timepix-Glass, ACF-63 + Tflow= 100s
¨ S16: Timepix-Glass, ACF-64 + Tflow = 500s

(New)
¨ S11: Timepix-Timepix, ACF-63, Tflow = 100s
¨ S12: Timepix-Timepix, ACF-64, Tflow = 100s
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First look
Sample 10 – ACF 63 – Flow for 100s

HEAD

¨ Initial (human) visual inspection shows about ~ 10 particles per pixel pad
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First look
Sample 16 – ACF 64 – Flow for 500s

HEAD

¨ Capture rate for the lower density film drops to about 1-3 particles
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Particle counting

¨ Counting the conductive particles with computer vision using OpenCV
¤ Finding contours

¤ Blob detection

n RGB to HSL color space conversion

¤ Pattern matching

n Averaged result + blob detection

n Pattern matching ^2

¤ Deep Neural Networks (new dnn OpenCV module)
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https://opencv.org/
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Particle counting
Finding contours

¨ Many methods starts with converting the image into a binary image by applying diferente thresholds
¨ Contours are any 2 subsequent points (x1,y1) and (x2,y2) having same color or intensity
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Particle counting
Finding contours

¨ Methods can profit from post-processing in the microscope pictures, such as contrast and brightness adjustment
¨ Contours detected ~ 70k; Filtered out (by area, convexity, and etc) particle contours ~ 1000
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Particle counting
Blob detection

¨ A blob is a group of connected pixels in an image that share some common property, as the grayscale value
¨ As with the contour detection, it is also possible to filter out detected blobs
¨ Number of real and fake particles detected changes a lot with threshold and filter settings

Higher contrast and lower brightnessDefault contrast and brightness
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Particle counting
Blob detection in HSL

¨ Changing the color space from Red Green and Blue to Hue Saturation and Lightness might help to highlight the particles
¨ Pixels outside HSL cut range are masked out
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Particle counting
Blob detection in HSL

¨ Post-processing contrast and brightness also helps to highlight the particles 
¨ Still, particles are lost on the cut and residual brackground yields fake detection
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Particle counting
Problem looking for particles

¨ As different thresholds and filters are applied to the pictures, the non-uniformity (in shape and color) of different parts of 
the chip pictures creates false particle detections
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Particle counting
Pattern matching

¨ At each location, a metric is calculated representing how “good” or “bad” the match at that location is
¨ Pattern matching is limited to scale and rotation transformations

Pixel values goes from 0 to 1, where 1 is the perfect match
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Particle counting
Pattern matching

¨ At each location, a metric is calculated representing how “good” or “bad” the match at that location is
¨ Pattern matching is limited to scale and rotation transformations

Good… less fake detections… still many particles missing
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Particle counting
Pattern matching - Averaging the result matrix 

¨ Each pattern will result in a different matching result matrix
¨ With the particles always in the same position, the “contamination” can be averaged out, leaving the particle blobs
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Particle counting
Pattern matching - Averaging the result matrix 

¨ Many particles are lost in the process
¨ No fake particle detection

Average of 10 match results Bitwise AND with 10 match results 
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Particle counting
Pattern matching on the pattern match result 

¨ Match result shows particle blobs very isolated from each other
¨ Running a pattern match a second time helps to discover many more particles with almost no fake detection
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Particle counting
Deep Neural Networks and OpenCV  

¨ New OpenCV module offers easy access to several dnn frameworks and layer types
¨ Running tutorials using the Caffe framework with an model trained on the COCO dataset (Common Objects in Context)

¤ Capable of detect 20 objects in images, among: airplanes, bicycles, birds, boats, cars, cats, chairs, horses, motorbikes, people, potted plants, etc…

mvicente@cern.ch – 21/06/19



18

Particle counting
Deep Neural Networks and OpenCV  

¨ Next step is to train a model with the patterns matched using the previous methods
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Cross-section measurements
Timepix-to-Timepix assemblies

¨ S11, high density film
¨ Good capture rate per pad
¨ Pictures shows no particle 

being crushed
¨ Pixel pad gap ~ 18 µm

¤ Good agreement with film 
thickness

¤ Thinner film needed for next 
assemblies;
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Cross-section measurements
Timepix-to-Timepix assemblies

¨ S12, low density film
¨ Low particle capture rate

¤ Confirming surface pictures

¨ No crushed particles
¨ Smaller pixel gap ~ 6 µm
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