

Energy Deposition Studies

cold section of the collimation insertion

(HE-LHC & FCC-hh)

M. Varasteh and F. Cerutti

Tracking input from BE-ABP; M. Crouch, R. Bruce, A. Mereghetti, J. Molson

Acknowledgments: C. Bahamonde, M.I. Besana, E. Skordis, other colleagues in BMI & FLU

FCC collimation design meeting #23

- Quick recap of the HE-LHC warm section (IR7)
- Energy deposition in the cold section
- Impact of the dog-leg removal
- Recap of the FCC-hh warm section (IRJ)
- > Losses on the 16 T dipoles

	unit	FCC-hh	HE-LHC	HL-LHC	LHC
center-of-mass energy	TeV	100	27	14	14
arc dipole field	Т	16	16	8.33	8.33
bunch population [10 ¹¹]	ppb	1	2.2	2.2	1.15
number of bunches		10600	2808	2760	2808
stored beam energy	GJ	8.4	1.4	0.7	0.36
total power loss for 12 min BLT	MW	11.8	1.9	0.95	0.5

Recap of the HE-LHC warm section (IR7)

M. Varasteh (collimation design meeting #22)

Collimator Jaws	Total power (kW)
Primaries	
TCP.D	3.7
TCP.C	29.5
TCP.B	53.1
1 st Secondary	
TCSG.A	56.1

For LHC at 6.5TeV, the max load is about 15 kW

Also the maximum *power density* was seen to be on the metallic support of the TCSG.A
<u>** new design with thicker jaws is required **</u>

(we have seen a 60% reduction of the total power in case of the FCC-hh)

Vertical primary collimator (directly impacted)

Cold losses, with & without TCLDs (HE-LHC)

- > Loading the touches on the collimators in the warm section
- > Dumping the particles that will hit the aperture in the cold section
- > Using the dumped particles for showering calculation in the cold section

Power density in the cold section, no TCLDs

** in LHC, the DS losses are deemed to be underestimated by a factor of 3 in the ideal machine simulation

Values are for the 12 min BLT !

With TCLDs (HE-LHC)

By inserting two collimators (TCLDs), before MQ8 and MQ10, the maximum peak

power density reduces to ~ 5 mW/cc

Impact of the dogleg removal (HE-LHC) - I

ÇÉRN

Impact of the dogleg removal (HE-LHC) - II

Impact of the dogleg removal (HE-LHC) - III

Tota	l power	(W)

beam separation in	MO7	MBA8	
warm section	in Q/		
204mm (no dogleg)	7.1	419.3	
224mm (nominal)	5.9	12.7	
244mm (larger dogleg)	4.8	12.1	

Values are for the 12 min BLT !

FCC-hh cold loss assessment

Recap of the FCC-hh IRJ warm section

With shorter (and less) primaries and thicker jaws, the maximum total power collected by a collimator (12 min 11) is below 100 kW.

M. Varasteh et al. (FCC Week 2018)

- Quench limit is normally given in terms of peak power density
- A correlation between "power density" and the respective proton loss density rate (p/m/s) would give the possibility to approximately indicate what we can tolerate on the cold magnets
- How the picture will change according to the Machine, Energy, Geometry, and the Coil Composition (HE-LHC, FCC-hh, and HL-LHC)
- Considering the worse scenario (open TCLD, 12 min BLT)

Main SC dipole

Cold losses (FCC-hh)

- Dumping the cold losses at the start of DS (with open TCLDs) by SixTrack-FLUKA coupling
- Identifying the DS magnets which receive the high losses
- FLUKA showering calculation up to the end of the cell 11
- SixTrack-fluka coupling simulation considers **BENT dipoles** *

From SixTrack-FLUKA coupling

FCC-hh cell 11RJ

For FCChh \rightarrow r- φ -z resolution: 2.9mm, 2°, 10cm

If we radially average over
 1.9cm, then the peak power
 density will reduce to about
 80mW/cc (~ 250/3)

 \mathbf{i}

Peak power density deposited in the superconducting coil is about 250 mW/cc at the end of the coil!

HE-LHC and HL-LHC

Summary

- For HE-LHC, by using two collimators (TCLDs), before MQ8 and MQ10, the maximum peak power density reduces to ~ 5 mW/cc
- Dogleg removal will result in a high increase of the peak power density in the first cold dipole (caused by neutrons and photons)
- For a loss density rate in the order of 1e7 (p/m/s) we got a factor of 40 more power density in FCC-hh cold dipole w.r.t HL-LHC
- By increasing the energy \rightarrow the power density will increase according to E^{1.15}

Mohammad Varasteh

CERN / EN-STI-BMI <u>m.varasteh</u> @ cern.ch **Backup Slides**

Power fraction in the FCChh collimation system

CÉRN

Particles hitting the MB.A8R7

	204mm (no dogleg)	224mm (nominal)	244mm (larger dogleg)		
Number of particles hitting the MB.A8R7					
PROTON	268	147			
PHOTON	48088	1085	5829		
NEUTRON	3187		101		
ANEUTRON	154				
PION+	118		94		
PION-	334				
LAMBDA	433				

CÉRN

