Update on ion collimation studies for FCC-hh

A. Abramov, R. Bruce, N. Fuster-Martinez, A. Mereghetti, J. Molson, L. Nevay, S. Redaelli CERN, 17.06.2019

Overview

- Performed a new set of studies of the FCC-hh collimation cleaning performance for ion beams using the SixTrack-FLUKA coupling.
- Used the lattice and collimation configuration by James:
 - The new stable lattice release includes changes accumulated over a long period of time.
 - Additional collimators introduced in locations with larger losses.
- Fixed several bugs found in previous results:
 - Previously missing ion physics process included.
 - Collimators losses in loss maps correctly normalised to the active length of the collimator.
- The results presented are included in the FCC-hh CDR.

Used parameters

Parameter	Value
eta^*	$30\mathrm{cm}$
Crossing angle	200
Particle	$^{208}\text{Pb}^{82+}$
$\epsilon_{ m N}$	$0.875\mu{ m m}$
Equiv. ϵ_{Np}	$2.2\mathrm{\mu m}$
${ m E}$	$4.1\mathrm{PeV}$
$\mathrm{E/Z}$	$50{ m TeV}$
E/N	$19.71\mathrm{TeV}$
TCP jaw length	$30\mathrm{cm}$
TCP opening	7.57σ
Impact parameter	$1\mu{ m m}$
N primaries	1×10^6
N turns	700
Tracking cut E	$1\mathrm{TeV}$ / nucleon

Quench limit for ions - recap

- Use quench limit for protons quoted by Daniel Schulte <u>https://indico.cern.ch/event/438866/contributions/1085167/</u>
- Ion beam parameters by Michaela Schaumann

Parameter	Value
Number of bunches	2760
Ions per bunch	$2 * 10^8$
Nominal ion energy	$4.1\mathrm{PeV}$
Proton energy	$50{ m TeV}$
Beam lifetime	$12\min$
Quench limit	$0.5 * 10^6 \mathrm{protons/s/m}$
Quench limit	$8 * 10^{-6} 1/m$

N.B. The loss maps are normalised to total energy loss instead of peak energy loss in the collimation system!

Betatron cleaning at collision – B1H

Betatron cleaning at collision – B1H IRJ

Momentum cleaning at injection – B1H

PA PF PG PJ

DS losses analysis – B1H, 76000 – 77000 m

NOMINAL

DS losses analysis – B1H, 76000 – 77000 m

- Connect the aperture losses to the collimator where they originated.
- All the fragments coming from the TCPs and TCSGs are successfully intercepted by the TCLDs.
- The dominant contribution to energy lost in the DS are light fragments leaking out from the TCLDs

Conclusions

- The latest studies of ion collimation for FCC-hh show generally good cleaning performance.
- The TCLD collimators are shown to intercept heavy-ion fragments coming from the TCPs and the TCSGs.
- A better estimate for the quench limit must be obtained using:
 - The latest NbSn quench limit values.
 - The latest energy deposition studies.
- Local losses in the DS of the betatron cleaning insertion and the extraction region must be studied further.

DS losses analysis – B1H@collision, 76000 – 77000 m

Energetic Fraction